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Abstract The goal of this paper is a comprehensive analysis of basic reasoning
patterns that are characteristic of vague predicates. The analysis leads to rigorous
reconstructions of the phenomena within formal systems. Two basic features are dealt
with. One is tolerance: the insensitivity of predicates to small changes in the objects of
predication (a one-increment of a walking distance is a walking distance). The other
is the existence of borderline cases. The paper shows why these should be treated
as different, though related phenomena. Tolerance is formally reconstructed within a
proposed framework of contextual logic, leading to a solution of the Sorites paradox.
Borderline-vagueness is reconstructed using certain modality operators; the set-up
provides an analysis of higher order vagueness and a derivation of scales of degrees
for the property in question.

Keywords Vagueness · Tolerance · Contextual logic · Semantic indeterminacy ·
Sorites paradox · Higher order vagueness · Degrees

1 Overview

This paper represents work done mostly in the period 1996–2002, which has been on
my website since the beginning of 2002.1 The idea of using syntactically represented
context operators, which originated in this work, has been applied for other purposes

1 The first versions of contextual logic were presented in two meetings of a joint workshop on vagueness,
held in 1996 at NYU and Columbia University. It was also presented in the 1997 fall meeting of the New
York Conference on Science and Methods. The system, in its present revised and simplified form that fully
preserves classical logic, was presented in an invited talk at the 2001 annual meeting of the Association of
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in a paper on contextuality, Gaifman (2008). There is no overlap between that paper
and the present one.

The present work contains an analysis of basic reasoning patterns that are char-
acteristic of vague predicates. The analysis leads to rigorous reconstructions of the
phenomena within formal systems. The first main thesis of the work is that one
should sharply distinguish two different kinds of phenomena associated with vague-
ness: tolerance and borderline-vagueness. Tolerance is the insensitivity of predi-
cates to sufficiently small changes in the objects of which they are predicated. A
walking distance is still a walking-distance if we increment it by one foot (but not
by 5 miles); a child is still a child 1 hour later (but not 5 years later); and so on.
Since any big quantitative change can be produced by accumulating sufficiently
many small ones, we get the Sorites paradox. Borderline-vagueness is the exis-
tence of borderline cases of the given predicate—objects of which it is not clear
whether they should be classified under the predicate or under its negation. This is
a phenomenon of semantic indeterminateness. Vagueness as it is usually conceived
is manifested in the existence of borderlines. I shall refer to it as vagueness per se.
Tolerance and, in particular, the Sorites paradox is a more specialized “technical”
notion.

As a rule, philosophers who wrote on these subjects bundled together tolerance,
and in particular the Sorites, with semantic indeterminateness. This is understand-
able, given that many of the standard examples display both tolerance and seman-
tic indeterminateness. Indeed, there is a connection. Yet, I will argue, these are
distinct aspects that require different treatments. It is not difficult to establish by
direct analysis, using easily available examples from natural language, that vague-
ness per se does not imply tolerance. The non-implication from tolerance to border-
line-vagueness is more difficult, since, in natural language, tolerance is manifested
by predicates with borderlines. Nonetheless, an analysis, aided by a specially con-
structed example, will show that, in principle, tolerance need not imply vagueness
per se.

Tolerance turns out to be a contextual phenomenon, whose rigorous analysis is
best done within a framework of contextual logic. This involves a formalism, which
provides for explicit representation of contexts by means of operators that combine
with wffs (well-formed formulas). The idea and the way it resolves the Sorites para-
dox can however be explained in a non-formal way, and this will be the first stage of
the exposition. The more technical part contains a formal system, a semantics and a
sound and complete deductive system. It extends first-order logic and fully preserves

Footnote 1 continued
Symbolic Logic, and its ideas are sketched in Gaifman (2001). The results on borderlines, higher order
vagueness, and KTB originated in the summer of 2001 and were discussed in my seminar on vagueness, in
the fall of 2001 at Columbia University. I wish to thank my colleague Achille Varzi and the participants of
this seminar for illuminating discussions. I would also like to thank Robert van Rooij, for his patience, with-
out which this work would not have been published in Synthese. I also thank him for calling my attention
to Klein (1980), cf. footnote 24.
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the classical rules. One can apply it to vocabularies that include tolerant predicates,
such as ‘poor’, ‘walking distance’, ‘noonish’, etc.2,3

The more common phenomena of borderline vagueness is treated in the second part
of the paper. Also here there is an essential contextual factor. But this factor “mixes”
with other factors and I found it more useful to use the framework of modal logic to
clarify what goes on, in particular, the phenomenon of higher-order vagueness.4

The full system incorporates two machineries: one, which takes care of borderline
phenomena, including higher order vagueness, and another, which handles tolerance
by means of contextual logic. In both of these, the material presented here is, philosoph-
ically and technically, new. The treatment of tolerance via the framework of contextual
logic is the part on which I have been working longer (cf. the footnote to the title).
The handling of borderlines and higher order vagueness follows the known strategy
of using a modal definiteness operator; but the interpretation of the operator and the
general approach are new. This topic needs further elaboration and the working out of
further technical details; yet, the outline presented here gives quite an adequate idea
of the full system.

Underlying the treatment of both aspects is a positive conception of the phenomena
in question: Borderline vagueness is not mere absence of semantic determination, but
recognition, shared by competent speakers, that a certain divergence in usage is legit-
imate and to be expected. In the same vein, tolerance is not merely the overlooking
of small differences, but a rule that is constitutive of meaning, which mandates that
small differences should not matter.

To prevent misunderstandings, I should point out that, while I find the formal appa-
ratus interesting by itself, it is used here as an instrument of analysis. It models, in
idealized form, some basic aspects of the way language functions. The acknowledged
distance between actual practice and the modeling is no more problematic than the
distance between actual practice and formal first-order logic. In the second part of the
paper I shall say something more of the modeling of vagueness by mean of precise
formalisms.

Another point I should briefly make here concerns the distinction between vague-
ness as a linguistic (or semantic) phenomenon and the so-called ontological vagueness.
The approach pursued here is, of course, linguistic. Yet an analysis of such a basic
aspect of language reveals something important about the relation between language
and what it describes. The temptation to project crudely from the language/world to the
world can lead to dubious problems, which arise out of a clash of metaphors without
sufficient backup. It is not that there are no vague objects, but that the very question

2 Raffman (1994) has proposed a contextual approach to the Sorites. My paper is independent of her work,
which came to my attention after the presentations of my preliminary results in 1996. Raffman’s approach
is psychologistic, rather than semantic, and does not involve a logical system. See Sect. 3.2 for further
comments on the difference.
3 I should also mention here Kamp’s work (1981), of which I became aware in 1997 and which is an
unfinished attempt at a logical system for handling the Sorites. His approach would not have lead to the
present system. I think it may succeed on the sentential level but would fail when it comes to quantifiers.
4 It goes without saying that my approach is logical, rather than linguistic. While there is considerable
overlap between the two, the orientation is different. For a linguistic approach to degrees see Klein (1980)
and footnote 24. No account of linguistic-oriented works on vagueness has been attempted here.
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is bad, given the way in which it has been viewed. A reining in of some pictorial
metaphysical tendencies would do some good. This does not mean a return to the
discredited doctrines of positivism or some ordinary-language school of philosophy.
But the study of vagueness could do with a dose of down to earth behaviorism.

In the next section I start with a general discussion of vagueness and tolerance;
it includes the argument that vagueness per se does not imply tolerance. I shall then
proceed to part I. This part, which consists of Sects. 3.1–3.5 deals with tolerance, the
Sorites and the framework of contextual logic where it is formally represented. Part
II consists of Sects. 4.1 and 4.2. It deals with borderline vagueness and its treatment
in modal logic. Each part starts with a non-technical philosophical analysis, followed
by the formal modeling. I hope that the presentation will give an adequate picture of
the setup to readers who prefer to skip the more technical details. I shall conclude by
outlining a combined system within which both tolerance and borderline vagueness
are represented.

2 Borderline–vagueness and tolerance

In ordinary usage, ‘vagueness’, is a broad term that covers an assortment of loosely
connected linguistic phenomena: imprecision, fuzziness, ambiguity, obscurity, lack
of specificity (hence the expression ‘vague generalities’), and their like. Some of the
overlap has crept into the early philosophical literature on the subject.5 But nowadays,
the term is used in philosophy to denote indeterminateness, exemplified by cases where
the semantic rules seem to leave it open whether some predicate P( ) is true of some
particular object, a; or, in general, whether a given description applies to some given
case. Moreover, the unclarity is not due to lack of factual knowledge, but to a semantic
gap: the semantic rules do not (or do not seem to) yield a determinate answer to the
question: P(a)? The indeterminateness, moreover, does not mean that the question is
out of order (as would be a category mistake, like asking whether number 3 is happy);
the question is appropriate, and unambiguous, but the semantics does seem to decide it.

Philosophers have also subsumed under vagueness the phenomena of tolerance:
the insensitivity of a predicate to very small changes in the objects of which it can be
meaningfully predicated.6 This gives rise to the Sorites paradox, which in its original
form was based on the tolerance of the concept heap: a heap of sand remains a heap
after the removal of one grain.7 It has been classified in the literature as a “paradox of
vagueness”. The paradox, let us recall, consists in the existence of a finite sequence of
objects, such that (i) the first clearly falls under P , (ii) the last clearly does not, but (iii)
the difference between any two successive objects is so small that, by tolerance, if one

5 E.g., Russell (1923) conflates vagueness with ambiguity. This, however, is not a confusion stemming
from loose usage, but a result of Russell’s attempt to define vagueness within his metaphysical framework.
6 The term ‘tolerance’ has been used in engineering to mark the amount of permissible deviation from
sharply specified values. It was also used by Zeeman (1961) in a somewhat related sense. (I thank Peter
Freyd, of the mathematics department at Penn. for bringing this to my attention.) In the context of vagueness
the term was introduced in Wright (1975).
7 ‘Sorites’ derives from ‘soros’, which in Greek means a heap. The paradox is probably due to Eubulides
who lived in the middle of the fourth century BCE.
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falls under P , so does the other. Applying instances of (iii) a sufficiently large number
of times, we can deduce from (i) that the last object falls under P (e.g., a 20-years-old
person is a child). I shall henceforth refer to such sequences as Sorites chains.

Some philosophers have taken the Sorites contradiction as grounds for radical con-
clusions. Dummett (1975) has argued that tolerant predicates infect natural language
with inconsistency, implying that tolerance cannot be accommodated within a coher-
ent semantics. Unger (1979a,b) has voiced even a more extreme position. Let me first
take a look at semantic indeterminateness.

Semantic indeterminateness can be manifested in two ways: (1) hesitation on the
part of the speaker, which does not derive from lack of factual knowledge;8 (2) diver-
gence in usage among competent speakers (in situations in which they are competent
judges) including, possibly, the same speaker on different occasions. These are the
concrete expressions of semantic indeterminacy and they can serve us as a guide in
the analysis. (1) and (2) are related: one’s hesitation can signify one’s recognition that
divergent answers are legitimate. Having to decide, one answers this way or that, yet
one is aware that a different answer cannot be ruled out on semantic grounds. Items
that give rise to this indeterminacy constitute the borderline region (‘penumbra’ is
another current term).

The very terminology—‘borderline’, ‘penumbra’—is based on geometrical meta-
phors that suggest distance. The problem of classifying borderline cases can be seen
as the problem of determining whether an object is sufficiently near, or similar (in the
relevant respects) to some other object; sufficiently near to warrant the classification
of both in the same class: if one falls under the predicate so does the other. And from
this there seems to be a natural link to tolerance. It would thus appear that tolerance
is an aspect of the borderline phenomenon, and that a suitable analysis of the latter
should suffice to dissolve the Sorites.

That this is far from true will become clear when we uncover (in Sects. 3.1 and 3.2)
the crucial contextual element that underlies tolerance. For the moment let me make
a more obvious point: indeterminateness does not imply tolerance. It should be clear
that conceptually (that is, without the geometrical metaphor) indeterminateness per
se need not involve tolerance; moreover, there need not be an implication even when
the indeterminateness involves some notion of “distance”. Here are some of the many
examples that support the claim.

First, many cases of indeterminacy lack the kind of scaling that tolerance, in any
appreciable sense, requires. The classification of a newly discovered object, or a new
situation, can be indeterminate, because the item lacks sufficient paradigmatic fea-
tures, or because it combines paradigmatic with anti-paradigmatic ones. Legal cases
are often of this sort. To cite a well-known hypothetical example from Hart,9 imag-
ine a city ordinance that prohibits the operation of vehicles in a public park. It is
not clear whether motorized skateboards fall under ‘vehicle’, in the sense used in
the ordinance. Motorbikes obviously do, baby strollers obviously do not. Motorized

8 By this I mean the usual kinds of facts that a competent speaker will find relevant; e.g., a person’s age—if
the predicate is ‘old’, or ‘child’, a person’s height—if the predicate is ‘tall’, etc. It is not supposed to include
the unknown “facts”, which the epistemic view posits.
9 Hart (1961). I am indebted to my former student Robert T. Miller for this example.
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skateboards share relevant features with the former, but fall short in respect of bulk
and speed. And it is not clear whether they endanger or inconvenience people, to an
extent that justifies their banning. A motorized skateboard can be seen as a borderline
case: more of a “vehicle” than a baby stroller, less than a motorbike. Here there is
no tolerance to speak of.10 (That the vagueness in question will disappear upon the
court’s decision—if and when the court decides—is irrelevant for the issue.)

Other staple examples come from taxonomy. An organism may baffle its classifier,
by possessing combinations of “incompatible” features. The platypus is a celebrated
case; like a bird it has a bill and, like birds and reptiles, it lays eggs; it has also other
reptilian features. But the females lactate and suckle the newly hatched “cubs”—a
fact that has determined its present classification as a mammal. Here the court has
decided. But originally it formed a borderline case, and even nowadays it is put in a
special subclass of mammals, the monotremes, which it shares with two other living,
similarly “strange”, species of echidna.11 One should also note that numerous every-
day adjectives (e.g., ‘generous’, ‘courageous’, ‘smart’, ‘loyal’, ‘lazy’, ‘depressed’,
‘happy’) which have borderlines, have only some loose tolerance that does not lead to
well-defined Sorites chains.

Most important, many vague predicates, which are completely determined by
numerical values and which can display higher order vagueness, lack any appreciable
tolerance. Consider ‘large number of fingers’, as in ‘You can perform the trick, without
using a large number of fingers’, or ‘A large number of John’s fingers were infected
by the fungus.’ Unlike ‘most fingers’, this predicate (abbreviated henceforth as LNF)
is vague. Obviously, 9 and 10 are LNFs; 1 and 2 are not; but is 6? is 5? Given that the
range is from 0 to 10 and that changes are in discrete units, there is hardly space for
tolerance; plausibly, one finger can make a difference: n + 1 can be an LNF, while n
is not. Or consider, ‘Only a small fraction of the committee is Republican’, where the
committee consists of eight people; one qualifies as a small fraction, four obviously
does not, but three is a borderline case. Even this limited example can give rise, as
we shall later see, to intricate patterns of higher order vagueness. Or consider ‘Large
number of siblings’, as in ‘Mary has a large number of siblings’; taking western, col-
lege-educated, present day parents as a reference group, the range is quite limited.
Unlike the previous examples, the range does not have a precise upper bound; but this
is of no concern: the predicate is vague but not tolerant. ‘A large number of divorces
for one person’ (7 certainly qualifies, does 4? does 5?), ‘A graduate, philosophy sem-
inar with many enrolled students’ (the range at Columbia is roughly 3–15), ‘A large
family group of gray wolves’ (rough range, 2–10), or ‘A large pride of lions’ (rough
range, 4–24). The last may perhaps display some tolerance, and tolerance is certainly
appreciable in ‘A large community of chimpanzees’ (rough range 35–65). As the range
becomes larger with respect to the unit of change, there is more scope for tolerance; not
because differences become less “discernible”—these are not perceptual predicates

10 A physical configuration of midsize bodies can be transformed into any other through a sequence of
many small changes. In particular, the continuous removal and addition of small chunks of matter can
transform a skateboard into a bicycle. Obviously, this is not the kind of Sorites chain that is relevant to our
example.
11 I thank Laura Franklin for calling my attention to these biological details.
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and the difference between 40 and 41 chimpanzees is as clear-cut as the difference
between 5 and 6 fingers—but because in the contexts in which the predicate is used
the difference can be practically ignored. I shall have more to say on this in the next
section when I take a closer look at tolerance.

3 Part I: tolerance, the Sorites and contextual logic

3.1 A closer look at tolerance

A predicate is tolerant, to the extent that sufficiently near objects are classified alike
with respect to it. What counts as “sufficiently near” depends on the predicate. Let us
associate with the tolerant predicate P a nearness relation, NP ( , ), and express P’s
tolerance by

(TC) NP (x, y)→ (P(x)→ P(y))

By a Sorites conditional I shall mean a conditional of the form P(a) → P(a′),
where NP (a, a′) holds; the conditional can be derived from an instance of (TC).

Since the nearness-relation is symmetrical, we can replace, in (TC), P(x)→ P(y)
by P(x) ←→ P(y). Very often NP (x, y) has the form: |m(x) − m(y)| < ε, where
m(x) is some numerical quantity associated with x (e.g., x’s height); if we fix the basic
unit we can construe the predicate as taking numbers as arguments (e.g., the number
of inches); in this case the condition is simply |x − y| < ε. In principle, ε can depend
on x , but in all the paradigmatic examples it is some fixed small enough number.
Assume that the nearness relation is such that there are sequences, a0, a1, . . . , an , for
which NP (ai , ai+1) for all i < n, such that P(a0) and ¬P(an) hold on any plau-
sible account. The Sorites conditionals, P(ai ) → P(ai+1), and P(a0) imply, via n
applications of modus ponens, the unacceptable conclusion P(an). Instead of using
the Sorites conditionals as premises, we can combine them, via conjunction, into one
premise

∧
i<n (P(ai )→ P(ai+1)); in many cases we can also use as a premise a

universal generalization of the form: ∀x[P(x)→ P(x+δ)], such that an = a0+n ·δ.
Any acceptable analysis of the Sorites should handle equally well all these variants.

Attempts based on current non-contextual theories of vagueness, which have by far
and large lumped together tolerance and borderlines, have tried to resolve the Sori-
tes by impugning—in different ways—the validity of the Sorites conditionals. On
such a theory, our acceptance of the conditionals derives from some sort of illusion.
My common argument against these accounts is that they fail do justice to tolerance,
as a semantic phenomenon; they fail to account for the fact that conditionals of the
following kind are utterly compelling:

(SC) If John was young one second ago, then John is young now.

I shall argue that, far from being illusions, these conditionals are normative rules
that are part of the meaning of the predicates in question. What is wrong in the Sorites
reasoning are not the conditionals but the way in which they have been put together
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to produce the contradiction. The unsophisticated intuition that bans the stringing of
“too many” Sorites conditionals is essentially correct; the trick is to find a smooth,
non ad-hoc way of building such constraints into the logic.

Since this work does not intend, in any way, to survey existing approaches, I will
limit myself to short comments. The supervaluation theory construes a vague predi-
cate, P , as one that is partially defined. It bases the predicate’s semantics on the class of
all admissible completions of it—referred to as ‘sharpenings’, or ‘precisifications’—
where a sharpening is admissible if it satisfies certain obvious semantic axioms; e.g.,
a distance shorter than a walking distance is a walking distance. For simplicity, let
‘sharpening’ mean henceforth a sharpening that is admissible. In the supervaluation
semantics a sentence is true (or false) if it is true (or false) under all sharpening of the
interpretation of P . Sentences that are true for some sharpening and false for some
other do not have a truth-value.

Obviously, a Sorites conditional that does not involve borderline objects is true for
every sharpening. Every borderline object is classified under the predicate in some
sharpening, and under its negation—in another. Hence each Sorites conditional that
involves a borderline object is falsified by some sharpening which puts a cutoff between
the object and its neighbor. It is also true for every other sharpening that puts the cutoff
elsewhere. Hence each conditional that involves a borderline object is neither true nor
false. The conjunction of all conditionals is false however (since in every sharpening
some conjunct is false). Hence, we can hold the conjunction false, which avoids the
paradox. On the other hand we need not hold any particular conditional false. A similar
effect is achieved by using intuitionistic logic, as suggested in Putnam (1983); from
P(a0) and ¬P(an) we can derive in that logic ¬∧

i<n (P(ai )→ P (ai+1)), but this
does not imply a disjunction of the wffs ¬(P(ai )→ P(ai+1)). Neither of these two
accounts gives good reason for the compelling intuition that (SC) and its ilk are true.
If, as I shall later argue, the truth of the Sorites conditionals is part of the meaning of
tolerant predicates, the supervaluation approach fails.

One may invoke the fact that, for each particular time point, (SC) is true in every
sharpening except one. This explanation, appealing as it does to the proportion of
sharpenings that satisfy a given sentence, belongs to the degree-theory framework,
which I shall discuss shortly. Let me first comment on a different approach, which
treats vagueness as a kind of ignorance.

The epistemic thesis posits sharp unknown cutoffs. There is, on this view, a partic-
ular unknown distance, which is the maximal walking distance; if you add to it one
foot, or even one inch, it is no longer a walking distance. And there was a particular
heartbeat at which I ceased to be a child. The main argument for the view is that it
accords best with our practice of applying classical logic across the board, irrespec-
tive of vagueness. A considerable part of the argument rests on shortcomings of the
supervaluation account of borderline-vagueness, in particular, with regard to the truth
concept and the identification of truth with supertruth (truth in every sharpening). The
semantic modality theory of the second part of this paper provides an interpretation of
definite truth, without problematic side effects, which fully preserves classical logic.
To the extent that this approach is successful, the above motivation for the epistemic
account is gone. But even without semantic modality, the price of epistemicism is
simply too high. If I say to my friend ‘Let us meet around 3 o’ clock’, then, on the
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epistemic account, my proposal is that we meet between 3 − a and 3 + b, where a
and b are time points determined sharply up to a second, which are unknown, or even
unknowable, to human beings. Most people will find such an account absurd (and I
must agree). Perhaps epistemicism is best read as a directive to behave as if there were
sharp unknown boundaries for vague terms, because in various cases this seems to fit
our practices. Indeed, the sharpening of vague terms is not an arbitrary matter. Zool-
ogists were looking for the right classification of platypus. Astronomers have been
arguing whether Pluto falls under the concept planet. These arguments are sometimes
phrased as argument about facts. There is an element of discovery in finding the best
fit between our language and the world. The epistemicist error is to treat in this way the
sharp determination of ‘around 3 o’ clock’, or the heart beat at which one’s childhoods
ends. To do so is to ignore a basic aspect of linguistic usage.

Williamson (1992, 1994, pp. 216–234), suggested a weakened version of the Sorites
conditionals, acceptable to the epistemicist. In cases of imprecise information, claims
of knowledge must concord with margins of error. I cannot claim to know that the
number of people in some audience is at least 200, if the true number is 200 and my
knowledge is based on an observation that has a margin of error of 15%; because the
truth of my guess is accidental. In that case, I only know that the number of people
is at least 170. Williamson therefore suggested that we replace the original Sorites
conditional, P(ai )→ P(ai+1), with the weaker epistemically acceptable variant:

(ECi ) K (P(ai ))→ P(ai+1),

where ‘K ’ is the knowledge modality (‘K . . .’ means that the presupposed agent knows
that . . .). This blocks the modus ponens applications that lead to contradiction. I sus-
pect however that it does no more than to shift the paradox to another place, where it is
obscured by complications arising out of the knowledge modality.12 In any case, it is
very doubtful that the weakened conditional, ‘If I know that John was young a second
ago, then John is young now’ clarifies why we find the unmodified conditional (SC)
compelling. A more promising line is this: Since, on the epistemic view, all but one of
the many Sorites conditionals are true, the chance of hitting on the false conditional is
very small and we ignore it. This type of explanation belongs, as I mentioned above,
to the degree-theory brand.

12 From K n P(a0) and K n−1(ECi ), for all i < n, we can deduce, via standard modal logic, P(an);
e.g., K n−1(K P(ai )→ P(ai+1)) implies K n−i−1(K P(ai )→ P(ai+1)), which implies K n−i P(ai )→
K n−i−1 P(ai+1); putting all of these together, n applications of modus ponens yield P(an). To avoid the
paradox we must assume that either K n P(a0), or some K n−1(ECi ) is false. But we know that P(a0), e.g.,
‘A one-day old human is young’, is true and, having followed Williamson’s argument we know the truth of
(ECi ), for all i < n. Reflecting on the way in which we have arrived at this knowledge, we know that we
know these facts, i.e., we know K P(a0), and K (ECi ), for all i < n. This move can be repeated as needed,
in order to get the premises that imply P(an). My formal argument appeals to the so-called KK axiom:
K�→ KK�, which Williamson may want to reject. But although we do not have to subscribe in general
to KK, failures of KK should be accounted for; e.g., we might know something without being aware of our
knowledge. In the present case there is nothing that stands in the way of KK (besides the goal of avoiding
a version of the Sorites paradox). (ECi ) rests on an empirical known fact: a certain limit of our discerning
ability. If repetitions of KK are to be rejected here, they should be rejected in any other case of empirical
knowledge.
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The point of using predicates like ‘around 3 o’ clock’ is that there should not be
sharp cutoffs. I could have said, ‘Let us meet between 2:55 and 3:15’, or chosen some
other precise interval, but this would not have come to the same. ‘Nearly’, ‘approxi-
mately’, ‘roughly’ and similar modifiers are systematic blurring devices, used for the
purpose of ruling out commitments to sharp boundaries. Let me coin the technical
term ‘fuzzify’. The point of fuzzifying is not only to eschews sharp boundaries, but
to rule out any criterion by which sharp boundaries might be determined. If I view
3:14:45 as falling within the range of ‘around 3 o’ clock’, then I can legitimately
persist in my judgment after being informed that 55% of competent speakers (or any
other reference group) disagree. If I find that 95% disagree, I will probably change my
usage in order not to be radically out of tune with other speakers. The point however
remains that I need not change my usage as long as it does not conflict too much with
that of other speakers, where “too much” is itself vague. This guarantees sufficient
latitude. The function of the modifier ‘around’ is to introduce such latitude. Imagine
a superhuman computer, who, taking as input all English speech acts ever performed,
derives sharp interval (say up to a second) for ‘around 3 o’ clock’; this, again, would
make no difference, since the computer’s prescription is not binding. And if some
authority were to make it binding, it would amount to a legislative act that changes
the meaning of ‘around 3 o’ clock’. We would have in that case sharpened the vague
predicate, as we occasionally do for scientific, legal or political reasons. This of course
would make the modifier ‘around’ completely pointless.

We may deem certain problems beyond what humans can solve. There is good
reason to think that there are mathematical questions that, for reasons of complexity,
are beyond our ken. A physical theory can imply that certain facts are not knowable
to us. But in all such cases, there is a rich system, and a well-developed methodology
for establishing truth, that gives these statements meanings. If a mathematician claims
to have found that CH (the continuum hypothesis) is true, then, barring a hoax or a
mistake, I will suspect that he has some argument for the truth of CH, or something
that might motivate the adoption of CH as an axiom. But if someone claims to have
found that 5500′ is walking distance and 5501′ is not, then, barring a hoax, I do not
know what to make of the claim; I will suspect that this person does not understand
what ‘walking distance’ means.

Being a walking distance is not something that can change with a one-foot incre-
ment, just as childhood cannot cease at a particular heartbeat, and being rich cannot
be lost by losing a penny, and so on and so forth. These are rules of usage, constitutive
of the meanings of the predicates in question.

The last point counts also against the degree theorist’s analysis of the Sorites. Degree
theory prescribes the assignment of more than two truth-degrees. In the case of the
Sorites, P(a0) has a maximal degree (which corresponds to the classical “true”); the
degree of P(ai ) gradually decreases as i increases, hitting the lowest (which corre-
sponds to “false”) at P(an). There is also a logic, according to which the degrees
of each conditional P(ai ) → P(ai+1) is high—reflecting the fact that P(ai ) has a
slightly higher degree than P(ai+1)—but not maximal. On degree theory, the paradox
arises when we fail to take into account the accumulated effect of many small decreases
in truth-degree. It is therefore a species of what might be called the small-effect fallacy,
where the smallness of each item blinds us to the magnitude of the cumulative sum.
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Of the solutions to the Sorites considered so far, the degree theorist’s is the most
satisfying. There is no denying the graded nature of vague predicates: the aptness
of applying them is usually a matter of degree. And there is no denying the gradual
decrease in degree, as we move in the Sorites chain. More than other approaches,
degree theory does justice to these facts. But the institution of a many-valued logic,
where connectives are interpreted as functions over truth-degree (or in terms of some
measure on sets of sharpenings) requires more in way of justification.13 The fact that
assignments of numeric values to sentences of the form P(a) may have plausible
meaning, and may even serve in certain efficient algorithms, need not necessarily
make such assignments a basis for a logic. This is a wide topic into which I cannot
venture here. My present argument, which does not depend on a general evaluation of
degree theories, is that by construing the Sorites as a small-effect fallacy, we miss the
crucial element of tolerance: its being part of the semantic norms governing the use
of tolerant predicates.

Small-effect fallacies are failures of quantitative thinking, which do not involve a
semantic element. Some slippery slopes derive solely from such fallacies and should
not be counted as instances of the Sorites. Here is one; call it “the occasional cab
paradox”. John’s finances allow him to take a cab from time to time, which he prefers
to the slower and less convenient public transportation. “One more cab will not make
a difference,” John keeps telling himself, and then at the end of the month . . . John
simply failed to appreciate the effect of many small expenses. This is not an instance
of the Sorites, for there are no compelling conditionals of the form: ‘If n cabs are
acceptable, then n+ 1 cabs are acceptable’. In fact, if we model the situation in terms
of preferences, or utilities, then there will be sharp cutoffs: the first n, such that taking
n cabs per month is strictly more preferable than taking any larger number. Some
degree theorists compare the Sorites to the lottery paradox.14 Again, a closer look will
show the essential difference. The lottery paradox, recall, consists in the inference:

For any particular person, it is unlikely that the person will win the lottery;
therefore, it is unlikely that someone will win the lottery.

Consider conditionals of the form: Unlikely(x) → Unlikely(x + ε), where
Unlikely(x) stands for: ‘An event of probability x is unlikely’, and where ε is some
fixed small number. Even if we agree to treat ‘Unlikely’ as a tolerant predicate over
numeric arguments, it is clear that this is not the source of the lottery paradox; else, we
could have constructed a Sorites chain without any mention of a lottery. The lottery
paradox exemplifies confusion in probabilistic thinking, which is also expressed in
terms of an illicit quantifier switch: from ‘it is likely that for some x . . .’ to ‘for some
x , it is likely that . . .’. There is nothing semantic about it.

13 One kind of degree theory interprets the sentential connectives as functions from degrees to degrees.
Another kind presupposes some measure over sets of sharpenings and defines the degree of a sentence as the
measure of the set of sharpenings that satisfy it. The first kind has served as a basis of efficient algorithms
for certain specialized problems. The second kind has the advantage of preserving, on the syntactic level,
classical logic.
14 McGee and McLaughlin (1994, pp. 221, 222).
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To recap, the non-contextual approaches to vagueness explain one’s acceptance
of the Sorites conditionals as a kind of illusion, understandable—but nonetheless an
illusion. They fail to come to grips with the fact that the conditionals express norms of
linguistic usage. The normative aspect becomes clear when we consider scenarios in
which the norm is contravened, and how bizarre they are. Say, John wants to know if
Meg is rich. Being informed, by Meg’s accountant, of all her assets, to the last penny,
John concludes that she is not. But when the accountant, who happens to glimpse Meg
passing by, adds “and, by the way, she has just picked up a penny from the pavement,”
John changes his verdict: “Now, she is rich.”

People are quite aware of the possibility of sharp cutoffs in gradually changing
situations. Threshold phenomena are known and respected. We have the story of the
straw that broke the camel’s back, but we do not have the story of the penny that made
someone rich.

Tolerance means that the Sorites conditionals are valid. In practice we avoid a
contradiction by not stringing together too many of them in a single deduction. The
conditionals are used, subject to such a restriction. Non-philosophers are amused but
undismayed by the paradox; they know that each conditional is valid but stringing too
many of them is illicit. This is the brute-force solution to the paradox. It is different
from the solution I shall propose, but it indicates the right direction. Let me add that
there is nothing incoherent in imposing some such restriction. A rule that limits the
use of another rule can itself be a meaning-determining rule.

Non-linguistic analogies are easy to come by. Some instruments are intended for
limited use. We have one-shot (disposable) gadgets, and, in principle, a device can
come with a manual containing an instruction: “Do not use more than . . . times”, or
“Do not use more than . . . times in succession”. To transgress the restriction is to use
the device contrary to its intended “meaning”. A theodolite is a portable instrument
for measuring angles, used in land surveys. Each measurement has a certain margin
of error. If we try to find the angle between l and ln by adding n measured angles:
between l and l1, l1 and l2, and so on, we may get an accumulated error, large enough
to cause contradiction in our data. Those who use theodolites avoid the adding up
of too many measured angles, where “too many” depends on the margin of error of
each measurement and the desired accuracy of the total. To the extent that the latter is
vague, so is “too many”.15

Now consider the restriction: a derivation should not use too many Sorites con-
ditionals, where “too many” means that the set of conditionals makes it possible to
traverse a Sorites chain. Here, ‘derivation’ is defined in a standard way, using a stan-
dard system based on modus ponens and universal generalization; a wff is used in a
derivation if it is either equal to, or a component of a wff occurring in the derivation.
This restriction blocks all the versions of the Sorites paradox, including the version
based on a universally quantified premise; that derivation is blocked, since it involves
instantiations to all the conditionals of the chain. Universal sentences can be used and
they can be instantiated, as long as this restriction is respected.

15 In constructing a structure from many pieces, knowledge of the tolerances allowed for the pieces is
crucial. A blue print for a machine is practically useless without tolerance specifications.
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The restriction would certainly suffice for the purpose of everyday reasoning with
vague predicates. We can tighten it further: A derivation should not contain the names
of all objects that make a Sorites chain. Further technical details can be worked out. The
set of theorems of the resulting system is not closed under modus ponens; e.g., we can
prove P(a0)→ P(ai ), using the first half of the Sorites chain, and P(ai )→ P(an),
using the second half, but we cannot prove P(a0)→ P(an). The system thus allows
for some forgetfulness; we can employ, on separate occasions, different collections of
Sorites conditionals, without being able to use jointly all the conclusions. Arguably,
tolerant predicates are intended for local use. I may judge on one occasion, 5280′
(1 mile) to be walking distance, and on another—to be non-walking distance. But on
every single occasion, if we have to decide whether 5280′ is walking distance and also
whether 5281′ is walking distance, the two answers had better be the same. We are
safe from wrong answers—such as “10 miles is walking distance”—since no single
occasion demands answers regarding each and every item in a Sorites chain.

The brute force approach is unsatisfactory since it imposes a restriction on proofs,
without making explicit the underlying contextual element of local usage. Yet the
needed positive account is already indicated by the above considerations. The system
should express the local aspect of the predicate’s use: the fact that, on each particular
occasion, the predicate has to be applied only to a restricted collection of objects, one
that is not expected to contain Sorites chains.

A context, in my proposed logical system, is a set consisting of objects that, on
a single occasion, have to be classified with respect to the predicate. Tolerance is
the requirement that near enough objects be classified alike. A context for which
there exists a classification satisfying the requirement, as well as the semantic axioms
governing the predicate, is called feasible. In all the standard examples of tolerant
predicates, this is equivalent to the requirement that the context does not contain a
Sorites chain.

Now, ruling out non-feasible contexts leads to a cumbersome system. The better
way is to allow all contexts but to restrict the tolerance requirement, so that tolerance
is, by definition, tolerance in all feasible contexts. We shall see that also sentences and
proofs have associated contexts. Those whose contexts are feasible form the feasible
portion of the language; and it is within this portion that a tolerant predicate is meant to
be used. The proof of the Sorites contradiction fails, because it requires an unfeasible
context and in unfeasible contexts a tolerant predicate looses its tolerance: it has some
sharp cutoff. But unfeasible contexts do not arise in practice.

3.2 Tolerance, context, and feasible contexts

That perceptual judgments can depend on context is an old idea that goes back to
psychological researches at the end of the nineteenth century. Stumpf (1883) notes
cases where a subject who experiences two stimuli, a and b, judges them to be equal;
also b and c are judged equal; but when experiencing a and c, the subject reports that
a < c. This contradicted accepted theories at the time, on which stimuli are classified
by absolute intensity. Kofka (1922) who reports this, on whom I draw for this history,
notes attempts (by Ebbinghaus and Titchener) to explain the phenomenon by assuming
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a certain “friction”: a lingering influence of a previous sensation on a later one. The
true solution to Stump’s puzzle has been proposed by Cornelius (1897): The subject’s
judgments should be relativized to the experimental settings: (i) comparison of a and
b, (ii) comparison of b and c, (iii) comparison of a and c. The subject’s report should
not be read as: “a and b have equal intensity,” but as: “in the setting of comparing
a and b, they have equal intensity”. The paradox disappears, when the contextual
parameter is introduced. (As Kofka tells the story, Stumpf admitted this possibility but
considered it too complicated.) Let the context consist of the items under comparison,
and let the relativization to context be effected by prefixing an operator: [. . .], where
‘. . .’ is a list of the compared items. Then, the subject’s reports are written as follows,
where ‘i(x)’ denotes x’s intensity:

[a, b](i(a) = i(b)), [b, c](i(b) = i(c)), [a, c](i(a) < i(c))

These do not imply a contradiction; if we remove the contextual operator, they do. The
context in which a, b, and c are simultaneously compared may not be psychologically
feasible, but it can be part of the formal language and we can consider sentences of
the form [a, b, c](…). Connections between sentences in different contexts can be
introduced through axioms, e.g., [x, y]((i(x)) �= i(y))→ [x, y, z]((i(x) �= i(y))).

In Sorites scenarios, it appears that classification of single items, by humans, de-
pends on the end of the chain from which the item is approached.16 Raffman (1994),
noting that the Sorites contradiction disappears upon relativization to the history of
previous perceptions, proposed this as a way of avoiding the contradiction.17

In the earlier philosophical literature much emphasis has been laid on psychological
factors as the source of tolerance. The most standard example of a Sorites chain is
a sequence of colors. In this and in similar perceptual cases, tolerance might appear
an inevitable outcome of perceptual limitations: we judge near enough items equal
because we do not perceive the difference. We deduce the difference between indistin-
guishable items, a, b, only by bringing into play additional items: a is distinguishable
from c, but b is not. The so-called non-transitivity of perceptual sameness has been
invoked to explain what goes on in the Sorites paradox.

The perceptual emphasis is misplaced, since vagueness, tolerance and the Sori-
tes do not depend on perceptual factors. Tolerance in ‘walking distance’, ‘rich’, ‘old’,
‘noonish’, ‘a large community of chimpanzees’, and their like does not hinge on indis-
tinguishability; 4017′ and 4018′, or 50 and 51 chimpanzees, are as distinguishable as
are 1 and 2. It is part of the predicates’ meanings that if 4017′ is walking distance, so
is 4018′; and if 51 chimpanzees constitute a large community, so do 50. The crucial
factor is this: We can ignore the distinction for the purposes for which these predicates
are employed and by ignoring it we achieve an enormous gain in efficiency. The appeal

16 When drawings in a “cat-dog” sequence, in which a cat gradually becomes a dog, are successively
presented to the subject, the verdict (“cat” or “dog”) for borderline cases will depend, as a rule, on the end
from which this sequence is run. People tend to stick with their initial classification. I have it on the authority
of reliable people who have seen such a report, but I could not locate a reference. I will be thankful to any
reader who can direct me to it.
17 Raffman’s approach is psychologistic and informal: the context is constituted by the short history of
the agent’s impressions. The approach does not involve any logic or a notion of a feasible contexts.
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to perceptual limitations, or to any psychological brute facts, is unfortunate, because
it construes justifiable norms in terms of brute psychology.

The logic that can handle contextual effects need not be a revision of classical
logic (like intuitionism or quantum logic), but an extension of it (like modal logic, or
dynamic logic). Contextual logic itself can be seen as part of the broader domain of
resource-bounded reasoning, which uses linguistic and logical devices that are suited
to work efficiently under the limitations of our deductive and data processing capaci-
ties. Take, for example, personal proper names. With thousands of people sharing the
same name, disambiguation is achieved by context. It is, in principle, possible to do
away with context, by instituting a universal system for tagging every past and future
human with a unique number. On a smaller scale, consider using social security num-
bers as names of people. This may be practicable for computers but not for humans,
who do incomparably better by letting the context determine the reference. For proper
names, this is the end of the story; there is no further logical development, since the
determination of the name’s reference by context is not amenable to precise treatment.
In the case of tolerance, there is an additional logical story, since “tolerance reasoning”
can be formally systematized. I shall start with some general remarks on the proposed
representation of contexts.

3.2.1 Representing contexts

The system is based on the following notation:

(C) [C]φ,

where φ is a wff, ‘C’ denotes some context and ‘[C]φ’ is to be read: ‘φ in the con-
text C .’ The context can be specified unsystematically, by letting ‘C’ stand for some
description of the occasion of use:

[Uttered in circumstances _ _ _] Edith Cohen is well to do.

Here there is no precise description of the way the context fixes the references; we
cannot, in general, do better than: “the most plausible woman referred to by ‘Edith
Cohen’ in circumstances _ _ _”. But there are contexts, and context dependencies,
that are amenable to precise, systematic treatment. In cases of time and place index-
icals ‘C’ stands for a description of a spatio-temporal region, which determines the
reference of the indexicals within its scope, according to the indexicals’ types:

[Uttered on June 2, 2000 in Manhattan] Today is a beautiful day.

As far as I know, scheme (C) has not been used before. Quite a few existing systems
incorporate context-dependency in other ways, usually through the semantics. In tem-
poral logic, sentences are evaluated at time points; in dynamic logic, they are evaluated
at “process points”, that is, states in an execution of a given program. Kaplan’s (1989)
system LD is of this kind, except that a sentence is evaluated at (i) a context consisting
of a person, a time point and a place (the references of ‘I’, ‘now’, and ‘here’), and (ii)
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a non-indexical time point and a possible world. The context operator ‘[C]’ makes for
richer expressive possibilities. We can have, for example, sentences in which ‘now’ is
employed at different times, and we can combine them:

[Uttered at time t1] Now it is day ∧ [Uttered at time t2] Now it is night.

This is impossible in the systems just mentioned. Now expressive power is not
always a virtue. Temporal and dynamic logic are meant to be used for program veri-
fication, where simplicity and easy application are crucial; if this can be done within
limited setups so much the better. But in LD, whose aim is purely philosophical, the
impossibility of treating statements by different speakers who employ the word ‘I’
is a serious limitation, which can be amended by incorporating context operators.
In Gaifman (2008) there is a system that incorporates, among other things, context
operators for proper names and various indexicals.

The Liar paradox provides an example of a different kind of context-dependency.
‘The sentence on line 1 is not true’ fails to express a proposition (or a true-or-false
proposition) when written on line 1; but the proposition expressed by another token of
that sentence, on another line, is true. In that case, the place where the sentence-type
is written plays the role of context. That paradox, and the semantics of self-reference
(direct and indirect) are treated in Gaifman (1992, 2000), by using pointer systems,
where pointers are generalizations of tokens. As shown in those works, that kind of
context dependency is not of the indexical type.

3.2.2 Contexts and feasible contexts

If P is a monadic tolerant predicate, then our contexts will be finite lists of objects
that are to be classified as P’s and non-P’s. To be sure, many other contextual factors
determine the use of tolerant predicates, as they do in general. Walking distances are
much longer in the Olympic village than in old people’s resorts. But these do not
concern us and, if needed, they can be handled by adding other context operators of
the form [C].

From now on, unless indicated otherwise, C in the context operator [C] is a finite
list of terms denoting objects that are to be classified with respect to P . For conve-
nience I speak occasionally of the context C , meaning the set of these objects, and I
shall use ‘a’ ‘b’ and other terms, as names in the formal language as well as in my
metalanguage. The intended meaning should be obvious. The tolerance conditional of
the previous section,

(TC) NP (x, y)→ (P(x)→ P(y)),

is now to be relativized to the context C as:

(TC∗) NP (x, y)→ [C](P(x)→ P(y)).
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From

NP (x, y)→ [C](P(x)→ P(y)) and NP (y, z)→ [C](P(y)→ P(z))

we can derive the conclusion: NP (x, y) ∧ NP (y, z) → [C](P(x) → P(z)). This
requires that the context in the two conditional be the same. Generally, if C is different
from C ′, we cannot derive something of this kind from:

NP (x, y)→ [C](P(x)→ P(y)) and NP (y, z)→ [C ′] (P(y)→ P(z)),

A context is feasible if its members can be partitioned into P’s and non-P’s with-
out violating any instance of the tolerance conditional or any of the semantic axioms
governing P (for example, a distance smaller than a walking distance should be a
walking distance). The non-violation of the tolerance conditionals means that we do
not introduce any sharp cutoff, that is, a cut between some a and b for which NP (a, b)
holds. This means that there should be at least one sufficiently large gap that can serve
as a divisor between P’s and non-P’s. For any given C we can express in the formal
language the condition that C is feasible. We can add a formula that expresses the
statement that C is feasible as a conjunct to the antecedent of (TC∗), this will give us
the scheme: C is feasible ∧NP (x, y)→ [C](P(x)→ P(y)). The satisfaction of this
scheme guarantees that P is tolerant in all feasible contexts.

Tolerance is, by definition, tolerance in feasible contexts. An unfeasible context
is one in which we would be forced to sharpen the predicate to a degree that makes
it no longer tolerant. For example, we might be required, on the same occasion, to
decide for each of the 2,640, distances dn = n × 10′, n= 1, . . . , 2, 640, which span
the distance from 10′ to 5 miles, whether it is a walking distance; assuming that 5 miles
is not a walking distance, this would force us to specify with precision ±5′ the maxi-
mal walking distance. We do not expect to encounter unfeasible contexts; nonetheless
context operators, [C], for unfeasible C’s, are included in the language so as to round
it off and avoid syntactic complications. Only the feasible part of the language—that
which does not involve unfeasible contexts—is needed for actual usage and for actual
reasoning.

I shall now consider an example that shows (as promised in the introduction) that
tolerance need not imply vagueness. A certain educational institution awards, every
4 years, a highly prestigious prize. The finalists—those who pass very demanding
preliminary tests—accumulate scores, from 1 to 20, by passing final examinations.
The rules are the following:

(i) Any finalist who scores 19 or 20 wins the prize.
(ii) A minimal score of 16 is required to win the price.

(iii) A finalist whose score differs by 1 from a winning finalist also wins the price.

The motivation for (iii) is the wish to avoid the possibility that an accidental small
difference be construed as discrimination between the candidates. (iii) is obviously a
tolerance constraint on the predicate ‘winner of the price’. There is a Sorites worry
that the rules will lead to contradiction if there are five finalists with scores 15, 16,
17, 18, 19. This worry is ignored, since such a scenario is extremely improbable. The
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preliminary screening examinations are so hard that in any given year the number of
finalists is too small to lend the possibility of a Sorites chain appreciable chance.

Thus the predicate ‘winner of the price’ is tolerant, where two people are suffi-
ciently near iff they are finalists at the same year whose scores differ by 1. Obviously
the predicate is as non-vague as a predicate can be. The role of contexts and of feasible
contexts is obvious here. The full context constitutes the finalists and their scores at
each given year where the price is offered. Since only the scores matter, we can take
as our contexts lists of scores. In the formalism proposed here any context containing
the scores 15, 16, 17, 18, 19 is an unfeasible context.

Admittedly, this is an artificial example of a legalistic nature. Nonetheless it suffices
to establish that, in principle, tolerance does not imply vagueness. In natural language
the contexts are determined by the occasions on which a tolerant predicate is used,
either in an assertion, an exchange, a thought, or in a single piece of actual (not philo-
sophical-hypothetical) reasoning. The contextual element complicates matters to a
high degree; in setting up a semantics, we try of course to avoid it. In natural language
the role of context is manifest only in the case of indexicals and demonstratives, which
carry their context-dependence on their sleeves. Now if P(c) is true in some contexts,
false in others, where the contextuality is not manifest, then the inevitable implica-
tion is that there can be divergent opinions about c, i.e., that it is a borderline case.
This is not to suggest that paradigmatic examples, such as ‘old’, ‘rich’ etc., started
their life as tolerant predicates and became vague through our ignoring some precise
contextual conditions. These predicates are both tolerant and vague, to start with. But
the observation explains the connection between tolerance and vagueness in natural
language.

Contextual logic handles tolerance per se, i.e., without vagueness. The required
dimension of vagueness is obtained by constructing on top of it a modal system with
a possible-world semantics, along the lines of Sect. 4.1.

3.3 TCL, tolerance contextual (first order) logic: the basic framework

We first provide a general formal setup within which tolerance can be treated. The
way it is to be treated is described in Sect. 3.4.

TCL is first order logic, augmented by context operators, which are of the form
[t1, . . . , tn], where t1, . . . , tn is any list (finite sequence) of terms; terms are individual
variables, individual constants, and—if the language has function symbols—expres-
sions built from them in the usual way. Wffs are defined recursively, by the usual
clauses and the following additional clause:

If t1, . . . , tn is a finite sequence of terms, and α is a wff, then [t1, . . . , tn]α is a
wff. Occurrences of variables in the ti ’s are free occurrences in [t1, . . . , tn]α.

We refer to t1, . . . , tn as a context list. The context corresponding to a list is the
finite set consisting of the values of the terms. (For convenience, we sometimes use
‘context’ ambiguously: for the set of objects and for the context list.)

‘x’, ‘y’, ‘z’, ‘x1’, ‘x2’, . . . , ‘y1’,‘y2’, . . . , etc., stand for individual variables, ‘s’,
‘t’, ‘s1’, ‘s2’, . . . , ‘t1’, ‘t2’, . . .—for terms, and ‘C1’, ‘C2’, . . . , ‘C ′’, ‘C ′′’, . . . .—for
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context lists. We use self-explanatory customary notations: if C = t1, . . . , tn and C ′ =
s1, . . . , sm , then, C,C ′ = t1, . . . , tn, s1, . . . , sm ; a single term is also regarded as a list
of length 1, hence, t,C = t, t1, . . . , tn .

For notational convenience we include the empty list, where [ ]α is, by
definition, α.

3.3.1 The semantics: context dependency functions

The non-logical vocabulary includes context-independent predicates and, possibly,
function symbols. Their interpretation is given, in the usual way, as a model for a first-
order language. Predicates that are tolerant are context-dependent, and every tolerant
P has an associated nearness relation NP , which is context-independent. The setup
however is designed to treat context dependency per se, without reference to tolerance.

Whether a context-dependent predicate is true of a given object (or n-tuple) depends
on a context (a finite set of objects). For the sake of simplicity, assume that we have
one monadic context-dependent predicate, P . The generalization to the case of several
context-dependent predicates, including predicates of higher arities, will be obvious.
Occasionally, we indicate it as we go along.

A model for the language is a structure of the form (M, f ), such that:

(1) M is a model for the context-independent vocabulary; the universe of M is
denoted as |M|.

(2) f is a function such that f (X) ⊆ X , for every finite subset, X ⊆ |M|. The subset
f (X) is supposed to consist of all members of X that, in the context X , fall under
P . (Otherwise stated, f associates with each X an interpretation of P over X .)

We refer to f as a context dependency function, or for short: cdf.
(If P is an n-ary predicate, where n> 1, then f (X) ⊆ Xn ; it consists of all

n-tuples in Xn that, in the context X , fall under P . If there are several context-depen-
dent predicates, then f associates with each, an interpretation, f (P, X), over X .)

For any cdf, f , and any context Y , let fY be the cdf that associates with every X
the subset consisting of the members of X that fall under P , in the context X ∪ Y :

fY (X) =Df f (X ∪ Y ) ∩ X.

The idea is that Y serves here as a fixed contextual background; we add its members
to any context on which the function operates. We refer to fY as the conditionalization
of f on Y .

The truth-values of wffs are now defined recursively. As usual, the truth-value
depends on assignments of members of |M| to the free variables of the wff. To avoid
elaborate notations, we will assume an implicit assignment to the free variables. The
value of a term under the assignment is determined in the usual way, via the interpre-
tation of individual constants and existing function symbols.

Atomic Wffs Satisfaction of atomic wffs with context-independent predicates is their
usual satisfaction in the modelM. For other atomic wffs:

(M, f ) |� P(t) iff a ∈ f ({a}), where a is the value of t.
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This means that, by definition, P(t) is evaluated in the context consisting of t , or
more precisely, of t’s value. (For an n-ary P , with n > 1, the context list consists of
all the terms that appear under the predicate.)

Context operator (M, f ) |� [t1, . . . , tn]α iff (M, fY ) |� α, where Y consists of
the values of the ti ’s.

Roughly, this means that the prefixing of [C] amounts to augmenting any context
by the values of the terms of C .

Sentential connectives The usual clauses of classical logic.
Quantifiers The usual clauses of classical logic.
This system is quite general. We have not imposed any restriction, in particular,

nothing relating to tolerance. Specific features are imposed through restrictions on
the set of models and this is discussed in Sect. 3.4. Various important restrictions are
expressible by sentences in the language of TCL. Since the forthcoming deductive
system is sound and complete, we get also sound and complete systems for the specific
cases, by adding these sentences, as axioms.

3.3.2 The deductive system

Any of the standard deductive systems for first-order logic can serve as a basis. A suit-
able enhancement of the basis can serve as a deductive system for contextual logic.
All first-order axiom schemes and inference rules are retained, where the wffs range
over the language of TCL, and where the free variables of a wff are defined as above.
Details of the enhancement depend on the first-order system we start with. Assuming
that the first-order inference rules are modus ponens and universal generalization, we
add the following axiom schemes:

(I) [x1, . . . , xn]α → [x ′1, . . . , x ′m]α, where {x1, . . . , xn} = {x ′1, . . . , x ′m} (i.e., the
same set of variables). The effect of the axiom is to make [C] depend only on
the set of terms occurring in C .

(II) (i) P(x)↔ [x]P(x)
(ii) R(x1, . . . , xn) ↔ [y1, . . . , ym]R(x1, . . . , xn), for every context-indepen-
dent R.

(III) [C] [C ′]α ↔ [C,C ′]α.
(IV) (i) [C] ¬α ↔ ¬[C]α,

(ii) [C] (α→ β)↔ ([C]α→ [C]β).
(V) [C]∀yα ↔ ∀y[C]α, where y does not occur in C .

It is easily seen that [C](α ∗ β)↔ ([C]α ∗ [C]β) is a theorem, for every binary
sentential connective, ∗, and that we can similarly replace ‘∀’ by ‘∃’ in (V).

I have chosen (III), (IV) and (V) for clarity, rather than economy. Since we have
universal generalization, it is sufficient to let C and C ′ be lists of variables. We can
furthermore restrict them to the case where C consists of a single variable. We can
also base the system on an operator of the form [t], and define [t1, . . . , tn]α as:

[t1] [t2] · · · [tn]α.
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This would make (III) redundant. Yet, (III) expresses the non-trivial semantics of con-
ditionalizing on context; we do better not to disguise it as a syntactic convention.
Alternatively, instead of using lists of terms, we can use sets of terms; this identifies
C with any list containing the same terms and makes (I) redundant.

Note that if α is any axiom of first-order logic then [C]α is a theorem, for every
context C : Take first the case where C consists of variables not occurring in α; using
(IV) and (V), “push” C inside, all the way, getting a provably equivalent wff; this wff is
a first-order axiom. From this the general case is obtained by universally generalizing
over the variable of C and instantiating them to the desired terms.

Soundness and completeness theorem If � is a set of sentences, then

� � α ⇔ � |� α.

Here ‘�’ and ‘|�’ denote, respectively, provability and logical implication in TCL
(a proof from a given set of wffs is defined in the usual way, and logical implication
means that α is satisfied in every model (M, f ) that satisfies all members of �).

3.3.3 Restricting the effects of contextual change

Since, in general, the cdf can be arbitrary, the system does not impose connections
between [C]P(t) and [C ′]P(t), where C and C ′ denote different contexts. TCL being
a general framework, it leaves the contextual effect open. We can impose the desired
connections between contextualization to different contexts through additional axi-
oms. The enhanced system will be complete and sound, since the deductive system of
TCL is. In Sect. 3.4, under ‘Conservativeness’, we discuss a continuity principle that
restricts the effect of context changes in the case of tolerant predicates, and we show
how to implement it via suitable axioms. In a more general philosophical vein, there is
a worry that contextualization might serve as an evasive technique, namely, one may
excuse contradictory beliefs through relativization to different contexts. Such a worry
should be addressed not by ignoring the possible effects of context, but by imposing
explicitly the required continuities.

3.3.4 The scopes of the context operators

Formalization in TCL may require decisions about contextual scope. The default
reading of the wffs gives the context operators minimal scope, e.g., P(t1) ∧ P(t2) is
equivalent to [t1]P(t1)∧[t2]P(t2), not to: [t1, t2](P(t1)∧ P(t2)). The latter is equiva-
lent to: [t1, t2]P(t1)∧[t1, t2]P(t2). Hence, to give the context operators maximal scope
amounts to combining them and applying the combined context to each component.
Depending on the case, this may seem the natural interpretation; e.g., ‘11:30 AM is
noonish and 1:00 PM is noonish’ is naturally evaluated in the context containing both
time points. This problem does not arise with respect to negation, since ¬ commutes
with [C]. We can consider a conjunction connective, ∧#, which has an additional
context-combining effect. It satisfies, among other axioms, the scheme:
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[C1]α ∧# [C2]β ↔ [C1,C2](α ∧# β).

Similar versions exist for all binary connectives. Since we can achieve the effect of
the #-connectives by using the classical connectives and the context operator, we do
not need them as primitives.18 Note that when we interpret universal quantification as
a (possibly infinite) conjunction, we should use conjunction in the sense of ∧, not in
the sense of ∧#; because the ∧#-based interpretation combines all the contexts of the
instances, resulting, as a rule, in an unfeasible context. Such quantifiers will be useless
for the purpose of handling tolerance.

Quantification may require contextual scope adjustment. Sometimes it is natural to
give the quantified variable maximal contextual scope over the quantified wff; that is,
we read ∀xα(x) as equivalent to ∀x[x]α. A different reading takes into account the
free occurrences of the quantified x in terms that occur under the context-dependent
predicate. Let t1, . . . , tn be the list of terms that occur in α under P and contain an
occurrence of x that is free in α. Then ∀xα is read as:

∀x[t1, . . . , tn]α,

There is a variant, call it TCL∗, obtained by reading the quantifiers in this way. It
has a sound and complete deductive system, and it retains classical sentential logic.
TCL∗ differs from TCL in the following items of quantification logic: The instanti-
ation axiom (for legitimate substitutions) is changed to: ∀xα(x) → [t1, . . . , tn]α(t),
where t1, . . . , tn is the above list of terms; the axiom ∀x(α → β)→ (∀xα → ∀xβ)
is deleted; universal generalization is changed to the following inference rule: from
β → [t1, . . . , tn]α(x), where x is not free in β and t1, . . . , tn is the above list, infer:
β → ∀xα.19

There are other variants that I shall not discuss here. The big advantage of TCL
is that it retains full classical logic and has the greatest expressive power. The default
scopes that underlie TCL can be overridden by inserting context operators in the
appropriate places. Hence, whatever is expressed in some variant can be expressed
in TCL, but not vice versa. The price for this is a greater need for contextual scope
adjustment. After Russell we should not be deterred by the need for scope adjust-
ments.

18 There is a system, call it CSL#, of contextual sentential logic, which is built only on the basis of the
#-connectives. In sentences of CSL#, every sentence component contributes a context, and the sentence is
evaluated in the context that is the union of all contributions; every sentence, α, of CSL# can be rewritten
in equivalent form [C]α′, where α′ does not contain context operators. There is also a corresponding sound
and complete deductive system. CSL, the sentential fragment of TCL, is much more expressive than CSL#

and its deductive system is an extension of classical logic, which CSL# is not.
19 In TCL∗, provably equivalent wffs, need not have provably equivalent generalizations; e.g., α and
α ∧ β, where β is a tautology containing, under P , variables not occurring in α. By applying a quantifier
to α ∧ β we “pull out” these variables into the global context. Therefore, mere mention of an item, even in
a “vacuous” way, may have a substantial effect, since it changes the context. Indeed, in ordinary speech we
would not add, for no specific reason, a vacuous conjunct, such as t = t . Regarded within this perspective,
this feature of TCL∗ may reflect actual intuitions.
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3.4 Tolerance and conservativeness

When it comes to specific systems, the choice of M is obviously restricted by the
semantics of the context-independent vocabulary. Here we can leave various details
open. For example, the first-order language can be either one-sorted, or many-sorted—
with different sorts of variables ranging over different sub-domains of |M|. The theory
ofMmay or may not be characterized by a recursive set of first-order axioms; we can,
for example, assume thatM includes, among its parts, the standard model of natural
numbers. The forthcoming analysis does not depend on these details.

The choice of f is constrained by requirements concerning the context-dependent
vocabulary. In the usual examples of tolerant predicates, such requirements involve
some ordering—or, more generally, pre-ordering—of the relevant domain.20 They
impose either monotonicity (every person of equal or higher height than a tall person
is tall), or anti-monotonicity (every distance smaller or equal to a walking distance is
a walking distance), or convexity (every time point between two noonish time points
is noonish).

We shall assume that, in general, the conditions can be expressed by finitely many
universal first-order sentences (including, possibly, quantifier-free sentences). Their
conjunction is equivalent to a single universal sentence. Hence, the semantic constraint
can be put in the form:

∀u1, u2, . . . , ukφ(u1, u2, . . . , uk), (1)

where φ is quantifier-free (if k = 0, this is a quantifier-free sentence). Our analysis and
constructions apply to the general case. As an illustration consider ‘walking distance’
whose anti-monotonicity is expressed by:

∀x, y(x < y → (P(y)→ P(x))). (i)

In order to express it in TCL, we have to consider possible contexts. Minimally, we
want to say that, in the context of any two distances, if the bigger distance is a walking
distance, so is the smaller:

∀x, y[x, y] (x < y→ (P(y)→ P(x))). (i′)

This is imposed in all contexts via the scheme:

∀y1, . . . , yn [y1, . . . , yn]∀x, y[x, y] (x < y → (P(y)→ P(x))), n = 1, 2, . . .

(i′′)

20 A pre-ordering is a reflexive and transitive relation over the given domain, which is total (any two
objects are comparable). We do not require, as we do in the case of an ordering, that a ≤ b and b ≤ a imply
a = b. For example ‘less than or equally tall’ defines a pre-ordering of the class of people (different people
can have the same height).
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The satisfaction of the scheme means that, for every context X , f (X) is an initial
segment of X under the ordering<. The requirement that some small distance, c, is a
walking distance and some large distance, c′, is not is imposed by adding as conjunct
within the scope of [y1, . . . , yn] the wff: P(c) ∧ ¬P(c′); thus we get:

∀y1, . . . , yn [y1, . . . , yn]∀x, y[x, y] {(x< y→(P(y)→ P(x)))∧P (c) ∧ ¬P
(
c′

)}
,

n = 1, 2, . . . (i′′′)

It is not difficult to show that this scheme (the set of all these sentences) is equivalent
in TCL to the scheme:

∀y1, . . . , yn∀x, y[y1, . . . , yn][x, y] {(x< y→(P(y)→ P(x))) ∧ P(c) ∧ ¬P(c′)
}
,

n = 1, 2, . . . (i∗)

(The two context operators can of course be amalgamated into one.)
In the more general case, where the semantic condition is expressed by (1), we

have, instead of (i), the wff:

∀u1, . . . , uk[t1, t2, . . . , tm]φ(u1, . . . , uk), (1′)

where t1, t2, . . . , tm are all the terms occurring in φ under P .21 The final general
scheme analogous to (i∗) is:

∀y1, . . . , yn∀u1, . . . , uk [y1, . . . , yn] [t1, . . . , tm]φ (u1, . . . , uk), n = 1, 2, . . .

(1∗)

Unrestricted tolerance can be stated as the universal generalization of (TC∗) (see Sub-
sect. 3.2.2). But this should be modified, since we want to impose it only for feasible
contexts. Tolerance in the context X means that any two members of X related by NP

are classified both as P’s, or both as non-P’s.22,23

Take again ‘walking distance’ as a representative case, where the scheme (i∗)
imposes the semantic conditions for P . For a context, X , let b1 < · · · < b j <

· · · < bm−1 be all the members of X in ascending order, which are strictly between c

21 (1′) depends on the terms occurring in φ under P . Naturally, one should write φ in a way that avoids
redundant terms under the predicate P (e.g., omit conjuncts of the form P(t) ∨ ¬P(t)). The differences
that are due to different ways of writing φ become unimportant when we pass to the scheme (1∗).
22 NP can be vague, but this is an aspect we are not concerned with now; it can be handled by using,
instead of a single model (M, f ), a family of possible models. For the moment, NP is a sharp binary
context-independent predicate.
23 It is possible to construe NP as context-dependent. We can fine-tune it so that the nearness relation
shrinks as the context approaches a Sorites chain, becoming at the end empty. In this way one can retain a
nominal “tolerance” in all contexts. But a nearness relation that is context-independent reflects better our
ordinary intuitions. It is also preferable not to have too many free parameters to play with.
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and c′; let b0 = c, bm = c′. Then X is feasible iff, for some i < m, bi and bi+1 do not
stand in the NP relation. For if bi and bi+1 do not stand in the NP -relation, we can
define f (X) as the subset of X consisting of all members that are≤ bi ; that is, we use
the gap between bi and bi+1 as a separator between P’s and non-P’s. Tolerance is sat-
isfied because there is no cutoff separating NP -near members of X . Obviously, if the
condition fails then there is no way of defining f (X) that does not violate tolerance.

The analogous requirement for ‘noonish’ (a predicate that satisfies the convexity
condition) should be obvious: two sufficiently large gaps are required, to separate
the noonish from the non-noonish times before 12:00 PM, and the noonish from the
non-noonish times after 12:00 PM. It is easily seen that if X is feasible, so is every
X ′ ⊆ X .

In these examples, the condition that characterizes the feasibility of a context of q
members is easily expressible by a first-order wff in the context-independent vocabu-
lary of TCL. Let Fsble(x1, x2, . . . , xq ) be this wff (in fuller notation there is subscript
‘q’, since the wff depends on q). Tolerance is then expressible by the scheme:

(TOL) ∀x1, x2, . . . , xq
{

Fsble(x1, . . . , xq)→ [x1, . . . , xq ](NP (x1, x2)→
(P(x1)→ P (x2)))}, q = 1, 2, . . .

In the general case, the feasibility of X means that we can partition X into P’s
and non-P’s in a way that is compatible with the universal generalization (1), so that
every two NP -related objects are in the same part. This requires that we characterize
‘compatibility with (1)’ in a way that is expressible in first-order logic. It can be done,
using the fact that (1) is a �1

0 sentence. The following is a short outline of the con-
struction, where we assume a single monadic tolerant predicate P . The interest of it
is that the idea can be generalized to languages that have several tolerant predicates,
of any arities, provided that the conditions governing the semantics of these predi-
cates are expressible by finitely many universal sentences. The general construction is
not needed for the treatment of the standard examples; readers not interested in these
details should skip it.

3.4.1 Outline of the general case

For simplicity, we shall regard the objects of the relevant domain as names of them-
selves. Let us regard any pair of sets (X , X ′), such that X ′ ⊆ X , as a partial interpreta-
tion of the predicate P: every a ∈ X ′ falls under P and every a ∈ X − X ′ falls under
¬P . If a /∈ X , its falling under P is left undetermined. Accordingly, for each a ∈ X ,
assign to P(a) the truth-value t, if a ∈ X ′; the value f—otherwise. If a /∈ X , assign to
P(a) the value u (undetermined). The rest of the non-logical vocabulary is interpreted
as inM. First-order wffs in the language whose non-logical vocabulary includes also
the predicate P can be now evaluated according to Kleene’s three-valued logic.

Define (X , X ′) to be compatible with ∀u1, . . . , ukφ (u1, . . . , uk) if the value of this
sentence under the partial interpretation of (X , X ′) is not f. This definition yields the
right notion for the simple examples discussed above, as well as in general. To see
this, consider the wff [y1, . . . , yn][t1, t2, . . . , tm]φ(u1, . . . , uk). Assign to each ui a
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member ci ∈ |M|, i = 1, . . . , k, and to each y j a member b j , j = 1, . . . , n. Let X
consist of all the b j ’s and all the values of the tl ’s, l = 1, . . . ,m under the assignment
of the ci ’s to the ui ’s. Observe that [y1, . . . , yn][t1, t2, . . . , tm]φ(u1, . . . , uk) is satis-
fied in (M, f ), under the assignment of the ci ’s and b j ’s to its free variables iff (X ,
f (X)) is compatible with ∀u1, . . . , unφ (u1, u2, . . . , un). Consequently, (X , f (X)) is
compatible with ∀u1, . . . , ukφ (u1, . . . , uk) for every context X , iff (1∗) holds, i.e.,

(M, f ) |� ∀y1, . . . , yn∀u1, . . . , uk [y1, . . . , yn] [t1, t2, . . . , tm]φ (u1, . . . , uk).

Now it is not difficult to see that, for a given φ, for each q and each p ≤ q, we can
say in first-order logic that the pair ({x1, . . . , xq}, {x1, . . . , x p}) is compatible with
∀u1, . . . , ukφ. A context X is feasible if there exists X ′ ⊆ X for which the following
holds: (X , X ′) is compatible with ∀u1, . . . , ukφ and for all a, b ∈ X , if NP (a, b),
and if a ∈ X ′, then b ∈ X ′. Clearly, for each q, we can say in first-order logic, using
only the context-independent vocabulary, that {x1, . . . , xq} is feasible. Hence, we can
formulate in TCL the scheme (TOL) that expresses the tolerance condition for (M, f ).
It can be also shown that if a context X is feasible so is every sub-context, X ′ ⊆ X .
This concludes the outline for the general case. ��

Returning to the usual examples, any context that is not too large must be feasible,
since it is bound to contain gaps. In the case of ‘walking distance’, even under a gener-
ous modulus of tolerance, by which the predicate is insensitive to a 200′ difference, we
need at least 28 distances to span the interval from 300′ to 6000′; contexts of less than
28 distances are feasible. On the other hand feasible contexts can contain thousands
of distances, provided that they have large enough gaps.

3.4.2 Conservativeness

The principle of conservativeness is that context change should have minimal effect.
The cdf should not be capricious. An object that is classified as a P in one context
should not be classified as a non-P in another, unless there is some pressing reason.
In our case, such a reason is the need to satisfy tolerance. If a feasible context is
enlarged by filling the gap that separates P’s from non-P’s with a dense chain, then
some changes in the classification will be necessary. Say, in the context {3000′, 4500′,
6000′}, 4500′ is walking distance and 6000′ is not; now augment the context by add-
ing 4510′, 4520′,…, etc., up to 5990′; in this context, tolerance dictates that 4500′ and
6000′ be classified alike, hence there must be a change in the status of one of them. We
might even want to change the classification upon adding a smaller number of scattered
distances inside the gap. Conservativeness means that changes should be justified by
such considerations. Consequently, if a is classified initially, that is, in context {a},
as a P (or as a non-P), then, the classification should endure except for certain large
dense contexts. It takes a specially designed predicate, like ‘winning finalist’ in the
example of Sect. 3.4, to create situations in which small changes in small contexts can
cause reversals.

While conservativeness is a wide general principle, some of its implications are
quite precise. Suppose that c /∈ X , but that the classification into f (X) and X − f (X)
determines (because of the semantic axioms relating to P) the classification of c.
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Then, the addition of c to the context X should not affect the existing classification of
the members of X . The addition of c should not matter, since, in the context X , we
know already how c is to be classified. Consider ‘walking distance’. If a ∈ X and, in
the context X , a is a walking distance, then by adding to X a new member< a, we
should not affect the existing classification of the members of X . Only the addition
of members inside a separating gap may, sometimes, force changes. Formally, this is
expressed by the scheme:

[x1, x2, . . . , xn] P(x1)∧y< x1→
n∧

i=1

{[y, x1, x2, . . . , xn](P(xi ))

↔ [x1, x2, . . . , xn]P(xi )}

By the same reasoning, or by iterating this step, the addition of many distances<a,
should not reverse the existing classification of members of X . Such an addition, how-
ever, can create a dense chain that makes it impossible to reverse the classification of
a. The effect of adding new members, whose classification is already implied by the
existing one, is to reinforce the existing classification, making changes harder.

3.5 Feasible formulas and proofs

The recursive evaluation that determines the truth-value of a given sentence in (M, f )
uses a part of the cdf, f , but not all of it. Consider, for example, the sentence

∀x[x] {P(x)→ ∃y, z (P(y) ∧ ¬P(z))},

which says that, for all x , if, in the context {x}: P(x), then there exist y and z such
that, in the context {x, y}:P(y), and, in the context {x, z}: ¬P(z). To compute its
truth-value, we need the values of f for all contexts of one and two elements, but not
others. If we change this to: ∀x [x] (P(x)→ ∃y, z (P(y) ∧ [y]¬P (z))), then, in the
new sentence, ¬P(z) is in the scope of [y], hence we need the value of f also for all
three-element contexts.

Say that α refers to the context X , if, in the recursive evaluation that determines α’s
truth-value, the value of f for X is needed. This, it is easy to see, depends onM, but
not on the particular f . Note that α may refer to X , though f (X) has no effect on α’s
truth-value; for example, the truth-value of a logical truth containing P is independent
of the interpretation, but the sentence refers to some contexts; ∀u(P(u) → P(u))
refers to all one-element contexts. The set of contexts referred to by a sentence is
determined, syntactically, as follows. Correlate with every wff α a set, cont(α), of
context lists (sequences of terms) associated with α, by the recursion:

• cont(P(t))={t} (‘t’ denotes also the one-element list)
• cont(α)=∅, if α is atomic and its predicate is context-independent,
• cont([Cα])={C,C ′ : C ′ ∈ cont (α)},
• cont(α ∗ β)=cont (α) ∪ cont (β), for every binary connective ∗,
• cont(¬α)=cont(∀xα)=cont (∃xα)=cont(α).
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Then a sentence α refers to the context X , iff X is the set of values (in |M|) of some
context list, C ∈ cont (α), under some assignment of values to the variables occurring
in C .

The notion extends to wffs, provided that we add an assignment of values (in |M|)
to the free variables of the formula; the contexts referred to by the wff depend on such
an assignment.

Call a sentence α feasible if it refers only to feasible contexts. Call a wff feasi-
ble if its universal generalization is a feasible sentence. Call a proof in TCL feasible
if it consists of feasible wffs. In ordinary usage, tolerant predicates are meant to be
used only in feasible sentences. It is obviously desirable that, restricted to the feasible
portion of the language, the deductive part of the system should capture the semantics.
And this indeed is the case:

The Completeness feasibility theorem If � |� β, where � is a set of feasible wffs
and β is feasible, then there is a feasible proof of β from �.

This is not the whole story. We have considered semantic constraints on the tolerant
predicate (or predicates, in the general case) that are expressible as a universal first
order formula (1). Now the scheme (1∗), which enforces the satisfaction of (1) in all
contexts, has non-feasible instances—those in which the number n is too large. Also,
the tolerance scheme (TOL) covers unfeasible instances. There is a strengthening of
the feasibility theorem by which all feasible consequences of (1∗) can be derived from
its feasible instances and the same holds for (TOL). This means that, as long as we are
interested in feasible consequences, the additional axioms that characterize specific
cases of tolerant predicates can be restricted to feasible sentences. We can therefore
do all our reasoning within the feasible part of the system.

The following completeness result for TCL yields, as a corollary, the complete-
ness feasibility theorem, and plays a part in proving the strengthened version just
mentioned. Say that two context lists are equivalent if the sets of terms occurring in
them are the same. Call an instantiation of a context list any context list obtained by
substituting variables by terms.

Localized completeness If � |� β, there is a proof of β from � consisting of wffs
whose associated context lists are equivalent to instantiations of context lists associated
with wffs of � or with β.

3.5.1 Possible developments of TCL

A considerable enhancement of expressive power is obtained by adding to TCL quan-
tifiable variables ranging over contexts, say X, Y , X1, . . . ,Y 1, . . . , which can occur
in the context operator; along with them we add a membership symbol that can occur
in wffs in the form: x ∈ X. The contextual variables range over the finite subsets
of the domain in question. This obviates the need for using schemes that cover an
infinite number of instances, such as (TOL); we can use instead single wffs that
are straightforward translations from the English. Thus, instead of using the wffs
Fsbleq(x1, x2, . . . , xq)—each saying, for a particular q, that {x1, x2, . . . , xq} is fea-
sible—we can say that a context is feasible by a single wff Fsble(X). Schemes
such as (1∗), obtained by varying the number of variables in operators of the form
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[y1, y2, . . . , yn], can be now replaced by single wffs containing operators of the
form [X ].

The price for this convenience is that we no longer have a complete deductive sys-
tem, since the system has the expressive power of weak second order logic (second
order logic in which the second order variables range over finite sets). Complete-
ness is regained if, disallowing quantification over context variables, we treat them
schematically; that is, the derivation rules allow to substitute X, in any theorem, by
an arbitrary context list. Essentially, this version amounts to a convenient notational
variant of TCL.

Further extensions come naturally to mind, such as the inclusion of infinitary con-
texts, (where this involves second order logic), or ordered contexts, in which the
ordering of the members matters, or, more generally, in which there is some additional
structure on the members of the context. An investigation along these lines should be
motivated however by specific examples.

4 Part II: borderlines and higher order vagueness

4.1 Semantic modalities, borderlines, higher order vagueness and degrees

I shall base my analysis on a definiteness operator,	, such that, for a vague predicate
P( ),	P(a) reads: “definitely P(a)”. It means that a definitely falls under P , that is,
it falls under P and is not a borderline case.24 Such an operator has been introduced
by Fine in his classic account of vagueness in terms of supervaluations.25 Border-
line cases can be then characterized as those that neither fall definitely under P , nor
definitely under ¬P .

(B) ¬	(P (a)) ∧ ¬	(¬P (a))

In the supervaluation framework	 can be interpreted in the obvious way. Outside
this framework, it has been a disputed subject. It has been argued that the prefixing
of ‘definitely’ does not change the content of a statement, or that being definitely true
is just the same as being true.26 Since in natural language ‘definitely’ is vague and

24 The analysis leads to a definition of degrees in terms of iterated modalities. A linguistically oriented
analysis of degrees is given in Klein (1980). That work outlines an extremely rich machinery for a semantic
and syntactic analysis of English comparative adjectives and degree modifiers, as exemplified in sentences
such as ‘John is more happy than Mary is sad’, or ‘Sean is taller then Mary but not very tall’. It incorporates
variants of generative grammars, elements of Motague’s intensional semantics, an abstraction operator and
a notation for Kaplan’s character. The contexts are, roughly speaking, comparison classes (e.g., ‘tall’ is
interpreted as ‘tall as a human’ in the context of humans, and as ‘tall as a mountain’—in the context of
mountains.) Within each class the semantics is based on a partial truth-function, with an option for super-
valuations. Sequences of shifts in comparison classes produce degrees. A common basic idea concerning
degrees is shared by the present proposal. The special feature of my proposal is the use of iterated modalities
as the only tool for producing degrees, where this is done within the modal system KTB (or possibly some
offshoot of it).
25 Fine (1975, p. 40).
26 Williamson (1994, p. 194) argues that this is so, unless ‘definitely’ is interpreted epistemically.
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ambiguous and can have many roles, there is ample room for arguments and count-
erarguments. The appeal to the truth predicate does not make things clearer. For one
thing, the difference should not be construed as a difference between the truth of P(a)
and the definite truth of P(a), but as the difference between the truth of P(a) and the
truth of 	P(a). Invoking Tarski’s biconditional is of no help either.27

Conceivably, one can use ‘definitely’ merely to emphasize, or to express confi-
dence. But ‘definitely’ adds true information, if the test for ‘definitely P’ is stricter
than the test for ‘P’. Pointing to a patch of unspoiled snow I assert, “this is definitely
white, while that [pointing to a trodden patch] is still white but not definitely white.”
Moreover, one’s hesitation may be due to semantic indeterminacy, therefore an expres-
sion of confidence can mean that this case does is not one of semantic indeterminacy,
i.e., is not a borderline case. And this does add informative content. In any case, we
are not concerned here with analyzing the natural-language meaning of ‘definitely’,
but give it a narrow technical sense as an operator in our system. One way of doing
this is to construe it in terms of borderlines: definitely P(a), just when (i) P(a), and
(ii) a is not a borderline case of P . And I propose to characterize a as a borderline case
of P just when the semantics does not provide grounds for ruling out either ‘P(a)’, or
‘¬P(a)’. To spell it out, consider a competent judge who classifies a as a P , yet recog-
nizes the legitimacy of classifying a as a non-P . Or imagine an idealized community
of competent judges; some (to whom I belong) classify a as P , but others (whom I
acknowledge) classify it as non-P . Moreover, the difference of opinions is due solely
to lack of semantic determination, not to different factual knowledge. It is this possi-
bility that ‘definitely’ is supposed to rule out. Wright (1994) took a similar line (if I
understand him correctly), but seems to have misconceived an important aspect.28

Acquaintance with semantic indeterminacy is part of what it takes to be a fully
competent speaker. It is not as if the speaker is simply at a loss; rather, he or she
recognizes (explicitly or tacitly) that the difficulty does not stem from one’s limita-
tions. The vagueness of the predicate, as manifested in the existence of borderline
cases, is common knowledge. We know that in some cases there can, and will be,
legitimate disagreements. This does not imply that we are agreed on which exactly
are the borderline cases—a question that raises the issue of higher order vagueness to
be addressed shortly. Of course, in actual cases the speaker may also be at a loss; he
or she may hesitate due to a combination of factors. I am not concerned here with a

27 Suppose a is a borderline case of ‘white’. We can retain the Tarski biconditional:
True (‘a is white’)↔ a is white, by construing ‘True’ so that the left-hand side inherits the vagueness of
the right-hand side. Other construals weaken the biconditional and endow ‘true’ with a “definitely” effect;
such is the case, if, subscribing to supervaluations, we construe ‘true’ as ‘supertrue’. We would do better
to separate the treatment of ‘true’ from that of ‘definitely’.
28 He proposes (p. 145) that for a sentence � “to be definitely true is for any appropriately generated
opinion that [not-�] to be cognitively misbegotten”. On the other hand he argues (p. 138) that “wherever
a stable consensus can be elicited that something is on the borderline between two concepts, that is merely
an indication that we could, if we wished, employ a concept intermediate between them and they are not
really complementary”. This is a wrong picture; the borderline is not “between two concepts”, but the
region in which legitimate disagreement can arise. If John divides the domain into P’s and non-P’s, then
the borderline, from John’s view, consists of those items, for which he grants, as legitimate, the possibility
of a different classification. There can be full consensus on what the borderline is, without this impugning in
any way the vagueness of P . Sorensen’s reply to Wright, in the same volume, has the same misconception.
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psychological picture of someone’s “state of mind”, but with the objective aspect of
semantic indeterminacy.

Note that we are employing throughout classical two-valued logic. This means that
the agent is called upon to make a yes/no decision. The addition of borderlines does
not exempt one from this requirement; there is no switch to many-valued logic, or
to degrees of truth (the connections with degrees will come out in a short while).
The same applies generally: To say that a sentence is a borderline case is to say that,
the relevant facts being known, neither � nor ¬� can be ruled out on the basis of the
existing semantics. And to say that definitely � is to say that � and that it is not a
borderline case. Note that this interpretation of ‘definitely’ is not supervaluationist.

Formally,	 is a modal operator, which belongs to the family of necessity operators.
We can conveniently speak here of semantic necessity. There is danger of reading into
the term unintended meanings. My use of it should be understood solely in terms of
the above explanations; no metaphysical or ontological overtones are intended. Let
∇ be the dual possibility operator, which we can conveniently regard as expressing
semantic possibility. This accords with the notation in Evans (1978).

Let B be the borderline operator. Each of the operators can serve as a basis for
defining the other two, via standard equivalences of modal logic:

(M) ∇�⇔ ¬	¬� B�⇔ ∇� ∧ ∇¬� 	�⇔ � ∧ ¬B�

If the vagueness of P is displayed by a such that BP(a) holds, second order vagueness
is displayed by the holding of B

2 P(a), i.e., BBP(a). In general, higher order vague-
ness can be expressed through iterations of the semantic modalities. But there is little
chance of getting insight into this matter, if we have nothing to go by, besides some
philosophical pictures about the nature of “definiteness” or “borderline” (the fruits of
gazing into panoramas of dissolving borders). Let us consider a concrete example.

A teacher has to grade a bunch of exams on a pass/fail basis; when the task is
accomplished, she will have two piles: the “passes” and the “fails”.29 Here the nega-
tion of “pass” is “fail”. She puts some exams, over which she hesitates, in a third,
temporary pile, for further deliberation. We can take the third file as the borderline
region. Note however that this is the borderline when the only alternatives are “pass”
and “fail”, not when “borderline” itself is added as a possible grade. Suppose that
someone in authority adds “borderline” as a third grade. The teacher is now called
upon to produce a three-fold classification. Will the three previous piles fit smoothly
into these categories? Not at all. She might have classified, in the first round, an exam,
a, as a “pass”, because she considered the alternative as clearly less appropriate; but
now that she has a third option, she may choose to classify a as a “borderline”, or
hesitate between “borderline” and (the new) “pass”. Also, cases that gave her pause in
the two-fold classification may give her pause also in the three-fold one: she hesitated
between “pass” and “fail” when these were the only options, but now she wonders
whether the third option suits the exam better than, “pass”. Nothing mandates that
hesitations in the two-fold situation be always clear-cut “borderlines” in the three-fold
one.

29 I owe Achille Varzi the idea of using a grading situation in order to analyze vagueness.
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The phenomenon is clearly contextual: the import of classifying an item under a
certain category is determined by the other categories available for classification.
This is such a trivial truth that I see no need to go into it further. What is not so obvi-
ous, and what has been ignored in the philosophical discussions of the topic, is that
this trivial truth underlies the phenomenon of higher order vagueness.

It is clear that the new “pass” and “fail” are not the same as the old ones. Since
they result by subtracting “borderline”, they should be construed as “definite pass”
and “definite fail”. The initial borderline (the third pile) constitutes the borderline
between (the old) “pass” and “fail”, when “borderline” was not an option. Higher-
order vagueness is vagueness in the context of extending the language by introducing
the old borderlines as additional categories. The phenomenon described in Sainsbury
(1990) as “concepts without boundaries” is the visual effect of a fast moving frame, a
repeated-extension process in which the addition of borderline predicates creates new
borderlines. Note that this makes it possible for a fixed finite domain of objects to sup-
port an infinite order of vagueness; the new borderlines can consist of previous definite
cases (as a in the example above), and also of previous (lower order) borderlines.

Having noted the discontinuity that results from the addition of options, let us also
note the continuities. The new judgments should cohere with old ones, for we are
not concerned here with revisions but with an extension of a previous view to a new
situation. The teacher cannot classify a as a “definite pass” unless she has classified
it, in the pass/fail situation, as a “pass”; and she cannot judge a as being possibly a
“definite fail”, unless she has judged it as being possibly a “fail” (i.e., it should be
either in the old “fail” pile or in the “borderline” pile). This implies that the modal
system should be at least KT; i.e., it should satisfy the usual requirements for a K
system, as well as: 	�→ �.

The teacher’s recognition that different grade assignments are legitimate can be
expressed by imagining other graders, whom she considers competent, who assign
different grades. This brings us back to a group-based modeling. If a borderline case
is one about which competent speakers can disagree, then the vagueness of ‘border-
line’ can be derived from the vagueness of ‘competent speaker’, which is vagueness
in the metalanguage. But I find that hardly any insight is gained by analyzing higher
order borderlines by means of the metalinguistic hierarchy. The same is also true of
the analogous set-theoretic hierarchy proposed by Fine (1975, p. 146).30 Also dealing
explicitly with the contextual parameter (the classification options) is rather tedious
and not illuminating. The most perspicuous way of handling higher order vagueness

30 The straightforward modal corollary of supervaluations is an S5 system, in which there is no place for
higher order vagueness. In order to express the higher order phenomenon, Fine uses an iterated superval-
uation construction. He defines a 0-order space as a set of (admissible) sharpenings of a vague predicate,
a 1-order space—as a set of 0-order spaces, and so on. An n-order boundary is defined as a sequence
s0, . . . , sn , such that each si is an i-order space and si ∈ si+1. An ω-order boundary is such an infinite
sequence of length ω. (We can then go on to define an ω-order space as a set of ω-boundaries, and continue
so, through all ordinals.) Boundaries of a given order can be identified with possible worlds. On Fine’s
proposal, a boundary, b0, bi+1, . . ., is accessible from another, a0, ai+1,…, iff bi ∈ ai+1 for all i < the
given order. This does not provide a fruitful grip on higher order vagueness. There is no direct relation
between the order of the boundary and the order of vagueness. The accessibility relation can turn out to be
an equivalence relation, in which case ω-order boundaries do not yield any vagueness of order >1.
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is to encompass, within one modal language, all the generated categories, expressing
them in terms of iterated modalities.

Just as ‘definitely’ can narrow a concept by ruling out borderline cases, ‘definitely
definitely’ can effect additional narrowing: Something is definitely definitely P , just
when it is definitely P and is not a borderline case of ‘definitely P’. And, in principle,
we can iterate further. As a rule, vague predicates are associated with some notion
of degree (very often, they are correlated with well defined quantitative scales: age,
height, distance, etc.). Degree theories propose to take such a notion as primitive. The
idea underlying the present approach is to use modalities in order to get degrees.

In terms of the possible world semantics,∇� is true in worldw just when� is true
in some world accessible fromw. In terms of semantic modality, the truth of∇�means
that holding � true is semantically legitimate. It is therefore natural to take possible
worlds as representations of semantic views: ways of applying the vague predicates
when “yes/no” decisions are required; for the present, they amount to possible shar-
penings. If w represents Mary’s view—her way of partitioning the relevant domain
into P’s and non-P’s—and w′ represents John’s view, then w′ is accessible from w,
just when Mary acknowledges John’s view as a legitimate way of applying P . Mary’s
acknowledgement of John’s view does not, of course, mean that she subscribes to it.
In particular, it does not mean that she acknowledges what John acknowledges. Say
Mary acknowledges John, and John acknowledges Bill; it need not follow that Mary
acknowledges Bill. If Bill holds � true, then John holds ∇� true, and Mary holds
∇∇� true but not necessarily ∇�. It is also possible that Mary acknowledges John’s
views with respect to the non-modal part of the language, without acknowledging his
views about sentences containing modal operators; in this case, w′ is not accessible
fromw, but a copy of it, say w′′, is; the difference between w′ and w′′ is in the worlds
that are accessible from them. In general, the possible worlds represent some hypo-
thetical semantic views (not necessarily views held by actual persons). The model is
chosen so that it includes the views that achieve certain effects. Later we shall see
some examples.

It is obvious and well known that S5 does not accommodate higher order vague-
ness. In models of S5 there is a division of the relevant domain into definite P’s,
definite non-P’s and a borderline region; each of these coincides with its “definite
core”, implying that they are sharp predicates. In standard examples, ‘walking dis-
tance’, ‘young’, ‘tall’, and their like, this outcome is counterintuitive (a sharp cutoff
for ‘definitely young’ appears no less arbitrary than a cutoff for ‘young’). Yet, in some
cases S5 yields acceptable results. Consider the example of Sect. 2, ‘a small fraction
of the committee’, where the committee consists of 8 members. Let ‘P(x)’ read as:
‘x is a small fraction of 8’, where ‘x’ ranges over the nine integers: 0, . . . , 8. Consider
three possible worlds, w1, w2, and w3, such that, in w1, P’s extension is {0,1}, in w2
it is {0, 1, 2}, and in w3 it is {0, 1, 2, 3}. If every world is accessible from every world,
then, in each of these worlds, ∇P , BP , and 	¬P have, respectively, the extensions
{0,1}, {2, 3}, and {4, . . . , 8}, and each is sharp (i.e., has an empty borderline). The
outcome is plausible. Vagueness disappears, if instead of using the predicate P , and
its negation, ¬P , we use 	P , BP , and 	¬P . But we cannot translate statements
involving ‘P’ into this language. The vagueness of P , which consists in the existence
of semantically indeterminate cases in the two-fold classification, is not diminished
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by the fact that BP is sharp (see also footnote 28). There are others plausible ways of
modeling of ‘a small fraction of 8’, in which, we shall see, the predicate has vagueness
of infinite order; there are also, for each n ≥ 1, models in which its vagueness is of
order n, but not n + 1.

Higher order vagueness can exist in models of S4. But if we adopt the above view
that ‘definitely definitely’ can, in principle, be stronger than ‘definitely’, then S4,
which blocks this possibility, should not be adopted. This point is reinforced by the
fact that S4 limits severely the possibilities of higher order vagueness. It can be shown
that the following is provable in S4, where ‘Bk’ stands for k iterations of B:

B
2+n�↔ B

2�.

This implies that in S4 a vague predicate either does not have second order vague-
ness, or has vagueness of infinite order in which all higher-order borderline regions of
order ≥2 are the same. (A precise definition of the order of vagueness will be given
in Sect. 4.2.)

By itself, modal logic cannot help us in choosing a system for semantic modal-
ity. And there is not much intuition to guide us, since the whole setup is a rarefied
philosophical exercise; we do not, as a rule, extend our stock of predicates by adding,
repeatedly, borderlines of borderlines of borderlines, or by iterating ‘definitely’. There
is nonetheless a certain large-scale feature of iterated modalities, which we may find
attractive and which suggests KTB as a good system for modeling vagueness.31 KTB,
recall, is obtained by adding to KT the scheme (known as B): � → 	∇�, or the
equivalent one:

∇	�→ �

In terms of possible worlds semantics, KTB is characterized by an accessibility relation
that is reflexive and symmetric: Mary does not recognize John’s view as legitimate,
unless he recognizes her view as legitimate. Plausible enough? Perhaps. But the real
argument for KTB, derives from the behavior of iterated modalities.

To simplify, consider first a sentence ψ . The three mutually exclusive sentences:

	ψ Bψ 	¬ψ

constitute a rough scale: the truth of 	ψ marks a higher “truth degree” for ψ , than
the truth of Bψ , which, in its turn, marks a higher degree than 	¬ψ . This order is
reversed for ¬ψ (note that Bψ is equivalent to B¬ψ). We can, if we wish, subdivide
Bψ into Bψ ∧ ψ and Bψ ∧ ¬ψ . For any k > 1, this rough scale can be refined by
subdividing	ψ according to additional markings:	kψ ,	k−1ψ ,…,	2ψ , where the
exponents denote iterations of the operator; we can do the same for¬ψ . The mutually
exclusive sentences, representing the resulting “intervals”, give us a scale of degree
sentences:

31 The use of KTB was also suggested in Williamson (1999), where iterated modalities are used in the
analysis of higher-order vagueness. My paper is independent of his work.
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	kψ, ¬	kψ ∧	k−1ψ, . . . ,¬	2ψ ∧	ψ, Bψ ∧ψ, B¬ψ ∧ ¬ψ, . . . ,¬	kψ ∧
	k−1¬ψ, 	k¬ψ
Call a scale obtained by using all or some of these markings, a standard scale.

In the illustration below, all the steps are carried out, for k=3. In general, the full
scale contains 2(k + 1) degree sentences, each of which uses a ≤ k nesting of modal
operators.

Assuming KTB, we can partition each degree of a standard scale as follows. Add,
inside the central Bψ region, two scale marks, for ∇	ψ and for ∇	¬ψ ; it is not
difficult to see that the remaining part of Bψ is 	Bψ :

And in each of ¬	 jψ ∧	 j−1ψ , add a scale mark for ∇	 jψ :

Do the same for ¬ψ (producing the mirror image of the above diagram). Call a
scale obtained by some or all of these subdivisions of standard degree sentences, a one-
refinement scale. The one-refinement scale is based on the provability, in the modal
system, of certain sentences. The provability of ∇	ψ → ψ , and of 	∇¬ψ → ¬ψ ,
which are instances of axiom B, implies that the added markings in the center fall
as indicated; other sentences are split as indicated, because ∇	 jψ → 	 j−1ψ is
provable. Without axiom B, we are not guaranteed that the new markings are even
comparable to the old ones. Other refinements are possible, but they require specific
theorems in the modal theory (that is based on the vocabulary of ψ) which, it appears,
are not instances of modal axioms of nicely behaved modal logics. In general, we
can get refinements by using alternating blocks of	’s and ∇’s. Their behavior—even
in KTB, if we go beyond the one-refinement scale—can be quite complicated. The
subject is beyond this paper’s scope. A degree sentence, φ, can “collapse” (be empty);
this happens when ¬φ is a theorem of our theory; e.g., if	2ψ → 	3ψ is a theorem,
then the degree sentences ¬	2ψ ∧	3ψ , and all of its sub degrees are empty.

Not every sentence can serve as a degree sentence; for example,	ψ∨	¬ψ cannot.
Intuitively, a degree sentence should correspond to an “interval” in the above picture.
This notion can be rigorously established, but I shall not pursue the topic here. Further
indications will be given shortly.
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In the degree sentences just considered, ‘ψ’ plays a schematic role. Abstracting
away from ψ , we can identify the degrees themselves as operators obtained by iter-
ating modal operators, in combination with sentential connectives. In modal logic a
modality is any sequence of monadic operators, including negation (e.g., 	∇∇¬	).
For our purpose we have to generalize this by allowing also binary sentential connec-
tives. First let the “empty modality”, E, be defined by:

Eψ =Df ψ.

Let a generalized modality be any operator obtained via the following recursive
definition.:

• E is a generalized modality.
• If M and M ′ are generalized modalities, so are¬M ,	M and M ∧M ′, defined by:

(¬M)ψ =Df ¬(Mψ) (	M)ψ =Df 	(Mψ) (M ∧ M ′)ψ =Df (Mψ) ∧ (M ′ψ).

This determines in the obvious way other modalities, such as ∇M , or M ∨ M ′.
As noted, only certain generalized modalities can serve as degrees. A set, D,
of potential degrees—consisting of generalized modalities that may serve as
degrees—can be defined as follows: Let D+ be the smallest class containing
E, such that if D, D′ ∈ D+, then, 	D, ∇D, D ∧ D′, D ∨ D′ ∈ D+. Let D− be the
smallest class containing ¬E, satisfying the same closure conditions. (The members
of each class are logically equivalent to the negations of the members of the other.)
Then D consists of all members of D+, all members of D−, and all conjunctions
D+ ∧ D−, where D+ ∈ D+ and D− ∈ D−. For a given D ∈ D, the degree (or truth
degree) of a sentence ψ is D, if Dψ is true. It is easily seen that all degrees of the
standard and one-refinement scales are among the potential degrees.

Now, a scale is not very significant, if the degree sentences have large “margins of
error”, that is, if they have broad borderline regions. Assume, for example, that we
grade exams on a scale of 1–10, where a’s grade is the degree of ‘a is a successful
exam’. Getting grade 9 means little if ‘a is a grade 9 exam’ is included in the borderlines
of grades 8, 7, 6, 5; because grade 5 would also count as a legitimate grade. In general,
the borderlines of degree sentences can get out of hand. The virtue of KTB, and the
main argument for its adoption for modeling vagueness, is that it provides sufficient
control over the borderlines—at least for standard and one-refinement scales. Here is
the relevant theorem:

Let φ1, φ2, . . . , φi−1, φi , φi+1, . . . , φn be either a standard or a one-refinement
scale of degree sentences for the initial sentence ψ . Then, assuming KTB, we have for
all i :

(i) For a standard scale, φi → ¬Bφ j is provable, for all j < i − 1, or j > i + 1.
(ii) For a one-refinement scale, φi → ¬Bφ j is provable, for all j < i − 2, or

j > i + 2, except, possibly, for the case where	Bψ is split into	Bψ ∧ψ and
	Bψ ∧ ¬ψ and where φi = ψ ∧ ∇	ψ , φ j =φi+3=¬ψ ∧ ∇	¬ψ , or where
φi =¬ψ ∧ ∇	¬ψ and φ j =φi−3 = ψ ∧ ∇	ψ .
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(In these claims empty degrees count as well; e.g., if, in case (i), φi+1 is empty, then
φi → ¬Bφ j is provable for all j > i .)

This means that, in a standard scale, the margin of error is no more than one degree
(because a degree is disjoint from the borderlines of all degrees that are removed from
it by more than one degree). For a one-refinement scale, the margin of error is no
more than two degrees, except that in the case indicated above it can be three. (The
exception disappears if we lump the two central degrees 	Bψ ∧ ψ and 	Bψ ∧ ¬ψ
into 	Bψ .)

Standard and one-refinement scales are special types that behave nicely under KTB.
This behavior is what recommends both these scales and the adoption of KTB. Appar-
ently, none of the other customary modal systems provides for systematic well-behaved
scales. I therefore conclude with a cautious endorsement of KTB.

Let us now apply degrees to predicates, instead of sentences. The application is
straightforward. Given a predicate P and a generalized modality M , MP is the predi-
cate defined by:

(M P)(x) =Df M(P(x)).

The degree predicates for P are the predicates DP, where D ranges over some scale of
degrees. For some fixed scale, the extensions of the degree predicates form a partition
of the domain, over which the argument under the predicate ranges. The diagrams
above become illustrations of partitions of the universe, according to the “P-degree”
of the objects.

Cases like ‘tall’ or ‘walking distance’, which come with a given ordering (or preor-
dering) of the domain, yield insights into degree predicates.32 Very often, the predicate
Pis either monotone or anti-monotone with respect to≤. Recall that a predicate S (over
the given domain) is convex, if it satisfies:

x ≤ y ≤ z→ (S(x) ∧ S(z)→ S(y))

It should be obvious that, for a monotone or anti-monotone P , convexity is a neces-
sary condition for being a degree predicate (if two people have, on our scale, the same
degree of tallness, then every person whose height is between their heights has also that
degree). It can be shown that if D is a potential degree, then for P that is either mono-
tone or anti-monotone, DP is convex. Note that, if P is monotone or anti-monotone,
B is a potential degree, but B

k , for k > 1, is not; for, in general, the extension of B
k P ,

for k > 1, is a union of separated intervals. Following these clues, we can construct
scales, from appropriately chosen potential degrees, without presupposing an ordering
of the domain. There is more to the story, which should be elaborated elsewhere.

The upshot of the above is a derivation of degrees, within classical two-valued logic,
as a byproduct of the modal system. So far, we have considered degrees of atomic sen-
tences. We can, however, apply generalized modalities that are potential degrees to
sentences in general. The downside of the approach is that, due to the complexity of
the system, finding the resulting patterns can be quite difficult. In actual cases, we

32 For the definition of a pre-ordering, see footnote 20.
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appeal of course to some given ordering (or preordering) of the domain; we do not
derive degrees via generalized modalities. But it is philosophically significant that, in
principle, degrees can be established solely on the basis of the definiteness operator.

4.2 More on higher order vagueness

The order of vagueness is defined as follows. A sentence ψ has vagueness of order
≥k if, for some n ≥ k,Bnψ is true. (We cannot simplify this to the condition that
B

kψ is true, because it is possible that B
kψ is false, but B

nψ is true, for some n > k.)
Vagueness of exact order k is defined as vagueness of order k, which is not of order
k + 1. When it comes to predicates the condition for vagueness of order ≥ k is: For
some n ≥ k, B

n P has non-empty extension. Exact orders are derived from this in
the obvious way. A sentence, or predicate, has vagueness of infinite order if it has
vagueness of order ≥ k, for all finite k.

The present system handles both higher order vagueness and degrees in terms of
	 only, paying the price of technical complexity. If we are prepared to ignore higher
order vagueness, we can opt for S5. We can also introduce degrees as an additional
component, through a probability measure on sets of possible worlds. The degree
of a sentence is then the measure of the set of possible worlds in which it is true.
This approach is compatible with the general framework of semantic modality, where
indeterminacy is interpreted in terms of legitimate disagreement.33

4.2.1 Sharp models for higher order vagueness

I shall now discuss the possibilities of sharp modeling of higher order vagueness. As
an illustration consider again the case where ‘P(x)’ reads: ‘x is a small fraction of 8’,
with ‘x’ ranging over 0, . . . , 8. For any predicate, S, let |S| be the extension of S. Let
w1, w2, w3, be the possible worlds defined earlier (in which |P | is, respectively, {0, 1}
{0, 1, 2} and {0, 1, 2, 3}). If every world is accessible from every world, we get the
S5 model discussed earlier. Let the modelM be obtained from it by a slight modifi-
cation of the accessibility relation: every world is accessible from itself, w1 and w2
are accessible from each other, w2 and w3 are accessible from each other and there
are no other accessibilities.Then, in w1, we have: |BP| = {2}, |B2 P| = {3}, |B3 P| =
{2}, |B4 P| = {3}, and so on, flip flopping ad infinitum. In w3 we have a similar flip
flopping starting with {3}: |BP| = {3}, |B2 P| = {2}, |B3 P| = {3}, etc. And inw2 we
have: |Bn P| = {2, 3}, for all n > 0. Each of these patterns, and the pattern determined
by the S5 model, can be fitted with some plausible story. Take for example w3 inM.
Assume the following scenario. I hesitate about 3, decide at the end that it is a small
fraction of 8, but acknowledge as legitimate the view that it is not. On any view 4
is not a small fraction of 8; also, I do not acknowledge a view on which 2 is not a
small fraction. Hence, on my view, |BP| = {3}. When BP is given as an additional
option, I classify 3 under it without hesitation, but hesitate whether 2 should belong

33 Again, full classical two-valued logic is retained. The possible worlds correspond of course to the
(admissible) sharpenings; but there is no identification of truth with supertruth.
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there as well; I decide it does not, but acknowledge as legitimate a view on which it
does: |B2 P |= {2}. When the options are further extended by adding B

2 P , I classify 2
under it without hesitation, but hesitate about 3. And so on. The full account requires
going through the whole model; but the story is sufficient to show how this works.

Small changes in the model can produce radical changes in the pattern: LetM′ be
obtained fromM by adding a possible world w0, in which |P| = {0}, and linking it,
via symmetric accessibility, to w1 (and to itself). Then in every world ofM′ we get
exact third order vagueness. In w2 the extensions of various predicates are:

|P| = {0, 1, 2} |¬P| = {3, 4, . . . , 8} |	P| = {0, 1} |	¬P| = {4, . . . , 8}
|	n P| = {0}, for all n > 1, |	n¬P| = {4, . . . 8}, for all n > 0, |BP| = {2, 3}
|∇	P| = {0, 1, 2} |∇	¬P| = {3, 4, . . . 8} |	BP| = ∅ |B2 P| = {1, 2, 3}
|∇	2 P| = {0, 1} |∇	2¬P| = {3, 4, . . . , 8} |	B

2 P| = {2} |B3 P| = {1, 3}
|∇	3 P| = {0} |∇	3¬P| = {4, . . . , 8} |	B

3 P| = {1, 3} ∣
∣Bn P

∣
∣ = ∅,

for all n > 3.

My ex-student Jonathan Simon showed that, in the case of a monadic vague P defined
over some set of numbers, we can get, for each n, vagueness of exact order n as follows.
Let the model consist of 2n possible worlds, w1, . . . , w2n , with a reflexive symmetric
accessibility relation that links them in a chain:wk andwk+1 are accessible from each
other for all k < 2n ; let the first half of that chain consist of copies of the same world,
and the second half—of copies of another, different world. So much for the examples.

There is a philosophical perception that a faithful rendering of vague terms must
be given in a vague language.34 Yet, a vague picture can be revealed, under powerful
magnification, to consist of a sharply defined collection of sharp pixels; conceivably,
one can point out the features of this collection that are responsible for the picture’s
vagueness, and even suggest quantitative parameters for measuring it. The role of a
sharp modeling of the borderline phenomena is analogous: the goal is not to produce
“equivalent vagueness” but to reveal how the mechanism of vagueness works.

As a rule, precise models do not match concrete situations precisely. There is always
some slack between the idealized drawing and the rough actuality. This is true in gen-
eral; very much so in the case of vagueness, where the slack can be quite large. The
mismatch between the model and the linguistic phenomena can be perceived as vague-
ness on a higher level. But we should separate the vagueness that is being modeled
from the imprecision of the modeling. It is well to recall here that vagueness is an
inside phenomena, acknowledged by the speakers, which enters into the meaning of

34 Williamson (1994, p. 191) observes that if vagueness is not ignorance, then the semantics of a vague
language must correlate with vague statements vague propositions; hence the metalanguage must be vague.
This argument overlooks the fact that our modeling need not lead to translations that produce “the same
propositions”. Its primary aim is to give us insight by providing a systematic general way of assigning
truth-values. In the possible world semantic, ‘necessarily �’ is true just when � is true in all the worlds
that are accessible from the actual world. But it takes a lot of stretching to say that ‘necessarily �’ and ‘�,
in every world accessible from this world’ express the same proposition (for one thing, it would require
modal realism à la Lewis). If anything, Williamson’s argument shows that “sameness of propositions” is
not a good notion for describing what a semantic account does.
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the vague terms. Let us not confuse it with the slack that arises when the theoretician
applies precise tools to imprecise phenomena. Also various parameters of the model—
such as the exact order of vagueness—are underdetermined by ordinary usage. Each
of the three worlds w1, w2, w3, in the above model,M, as well as the worlds in the
S5 model, yields a plausible semantic account of ‘a small fraction of a committee of
eight’; but I cannot tell which of them represents better my own usage. For my own
idiolect is not that clear-cut.

The most we can aspire is to produce the right sort of picture, one that captures the
essential mechanism and yields plausible patterns. Questions about the “right” model,
or the “correct” order of vagueness become meaningless if pushed too far. Such ques-
tions pertain to phenomena arising in repeated extensions of our language, through
iterations of ‘the borderline of…’, a process we do not engage in, except in some sort
of philosophical make believe; they cannot be decided by appealing either to actual
practice, or to “the world”. It is therefore quite misleading to speak, as philosophers
sometimes tend to, as if certain questions about higher order vagueness have matter
of fact, or philosophically determined answers. A philosopher might extrapolate from
familiar intuitions. For example, there is no sharp cutoff in the number of minutes that
qualifies as ‘young age’, and the same seems to hold with respect to ‘borderline of
‘young age”; it might appear that this should persist all the way, for ‘borderlines of
borderlines of borderlines of…’. There is nothing inherently wrong with such a picture
as long as we realize its source and its arbitrary aspect (and can one really be sure that
this is how one should decide after 100 iterations of ‘borderline’? Or after 10,000?).

It would be a misconception to push the vagueness phenomenon into the model-
ing. Confronted with vagueness of all finite orders, philosophers have considered the
predicate ‘an n-order borderline case, for all finite n’; should not such a predicate be
vague? And should not some object, say a, be in the borderline of that predicate? Sure,
if you want, you can continue the game; you can go on using additional operators and a
more complex modeling. It is an illusion however to think that some discoveries— lin-
guistic, metaphysical, philosophical—are being made in this way. The only discovery
is the technique, by which models that deliver certain effects can be constructed.

Here an analogy might help. We can define, in a purely extensional language, a pos-
sible-world semantics for a modal system. It would be a mistake to apply the notions
of possibility and necessity, which are being modeled, to the statements of this exten-
sional language (“Is it necessary that the number of possible worlds is such and such?
Could the accessibility relation be different from what it is?”) Similarly, we can define
a semantics for an inherently vague language in a sharp metalanguage. And it would
be a mistake to use the machinery of that language in order to generate vagueness in
the metalanguage.

The observations about sharp modeling of vagueness apply also to tolerance. Our
usage determines only basic features of the corresponding formal systems, leaving
finer details undetermined. And there is also the inevitable slack between the pre-
cise model and the rough actuality. The contextual dependency of P is transmitted to
wffs in which P occurs. For example, assuming that P takes numeric magnitudes as
arguments let φ(x) be:

∀y[P(y)→ P(y + x)]
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This wff says that P is insensitive to changes of x . Sorensen (1994) proposes a par-
adoxical Sorites argument for a predicate of this kind.35 The context dependency of
φ resolves the paradox. On the other hand, it can be argued that the nearness relation,
NP , is itself tolerant. This would be another matter, since the nearness relation is not
defined in terms of P , but is a sharp relation that determines the amount of tolerance.
We can extend our formal system by treating NP as tolerant, which would require
the introduction of a second level nearness relation NNP , or say, N 2

P ; if desired, we
can go further and introduced a nearness relation N 3

P for that; and so on ad infinitum.
All of this is doable and gives rise to complex systems in which contexts are highly
complicated entities. But the move is unnecessary. The nearness relation is not one of
the items to be modeled, but part of the theoretician’s machinery. For the purpose of
modeling tolerance, NP can be chosen as a suitable sharp relation. It is true that, if
NP yields plausible results, so will a sufficiently small modification of it. This is an
instance of the slack phenomenon.

4.3 TCLV: Combining tolerance with general vagueness

A combined modeling of tolerance and general vagueness requires that we extend
the language of TCL, by adding a modal definiteness operator, 	, according to the
outline just sketched. Call the resulting system TCLV. Instead of one structure (M, f ),
we have a family (Mi , fi )i∈I , each constituting a possible world, with an appropri-
ate (reflexive and symmetric) accessibility relation. If only the tolerant predicates are
vague, then the possible worlds differ only in the semantics of these predicates, i.e.,
in the fi ’s. For simplicity, assume that this is the case. Accordingly, let the family of
possible worlds be (M, fi )i∈I . Assume also that Pis the only tolerant predicate; say
it stands for ‘walking distance’.

The universal sentence that determines P’s semantics, and the tolerance condi-
tion (TOL), are true in every (M, fi ). Also conservativeness is imposed in all possible
worlds. On the syntactic level, this means that various universal sentences are included
as axioms, which are subject to the necessitation rule. Among these are axioms that fix
certain objects (distances) as P’s and others as non-P’s, e.g., P(200′), ¬P(20,000′).
These are true in every context, in every possible world. Other parameters can depend
on the possible world. For example, the maximal distance that in all contexts is a
walking distance can vary from world to world. As can the minimal distance that in
all context is not walking distance. And, of course, for a given context, the cut that
separates walking from non-walking distances can, in general, depend on the world; in
particular, the truth-value of P(c) (i.e., P(c) in the context {c}) can vary. Higher-order
vagueness is modeled in the way described in Sects. 4.1 and 4.2.
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